Lecture 5

Euclidean n-space R^{n} and Dot,

Cross Products

5.0 Vectors in R^{n}
5.1 Length of a vector
5.2 Dot Product
5.4 Cross Product

5.0 Vectors in R^{n}

- An ordered n-tuple:
a sequence of n real number $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
- n-space: R^{n}
the set of all ordered n-tuple
- Ex:

$$
\begin{aligned}
& n=1 \quad R^{1}=1 \text {-space } \\
& =\text { set of all real number } \\
& n=2 \quad R^{2}=2 \text {-space } \\
& =\text { set of all ordered pair of real numbers }\left(x_{1}, x_{2}\right) \\
& n=3 \quad R^{3}=3 \text {-space } \\
& =\text { set of all ordered triple of real numbers }\left(x_{1}, x_{2}, x_{3}\right) \\
& n=4 \quad R^{4}=4 \text {-space } \\
& =\text { set of all ordered quadruple of real numbers }\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

- Notes:
(1) An n-tuple ($x_{1}, x_{2}, \cdots, x_{n}$) can be viewed as a point in R^{n} with the x_{i} 's as its coordinates.
(2) An n-tuple $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ can be viewed as a vector $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ in R^{n} with the x_{i} 's as its components.
- Ex:

a point

$(0,0)$
a vector

$$
\mathbf{u}=\left(u_{1}, u_{2}, \cdots, u_{n}\right), \mathbf{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)
$$

- Equal:

$$
\mathbf{u}=\mathbf{v} \text { if and only if } u_{1}=v_{1}, u_{2}=v_{2}, \cdots, u_{n}=v_{n}
$$

- Vector addition (the sum of \mathbf{u} and \mathbf{v}):

$$
\mathbf{u}+\mathbf{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}, \cdots, u_{n}+v_{n}\right)
$$

- Scalar multiplication (the scalar multiple of u by c):

$$
c \mathbf{u}=\left(c u_{1}, c u_{2}, \cdots, c u_{n}\right)
$$

- Notes:

The sum of two vectors and the scalar multiple of a vector in R^{n} are called the standard operations in R^{n}.

- Negative:

$$
-\mathbf{u}=\left(-u_{1},-u_{2},-u_{3}, \ldots,-u_{n}\right)
$$

- Difference:

$$
\mathbf{u}-\mathbf{v}=\left(u_{1}-v_{1}, u_{2}-v_{2}, u_{3}-v_{3}, \ldots, u_{n}-v_{n}\right)
$$

- Zero vector:
$\mathbf{0}=(0,0, \ldots, 0)$
- Notes:
(1) The zero vector $\mathbf{0}$ in R^{n} is called the additive identity in R^{n}.
(2) The vector $-\mathbf{v}$ is called the additive inverse of \mathbf{v}.
- Thm 4.2: (Properties of vector addition and scalar multiplication) Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in R^{n}, and let c and d be scalars.
(1) $\mathbf{u}+\mathbf{v}$ is a vector in R^{n}
(2) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(3) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(4) $\mathbf{u}+\mathbf{0}=\mathbf{u}$
(5) $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
(6) $c \mathbf{u}$ is a vector in R^{n}
(7) $\mathrm{c}(\mathbf{u}+\mathbf{v})=\mathrm{cu}+\mathrm{c} \mathbf{v}$
(8) $(c+d) \mathbf{u}=c \mathbf{u}+\mathrm{d} \mathbf{u}$
(9) $c(\mathrm{du})=(c d) \mathbf{u}$
(10) $1(\mathbf{u})=\mathbf{u}$
- Ex 5: (Vector operations in R^{4})

Let $\mathbf{u}=(2,-1,5,0), \mathbf{v}=(4,3,1,-1)$, and $\mathbf{w}=(-6,2,0,3)$ be vectors in R^{4}. Solve \mathbf{x} for x in each of the following.
(a) $\mathbf{x}=2 \mathbf{u}-(\mathbf{v}+3 \mathbf{w})$
(b) $3(\mathbf{x}+\mathbf{w})=2 \mathbf{u}-\mathbf{v}+\mathbf{x}$

Sol: (a) $\mathbf{x}=2 \mathbf{u}-(\mathbf{v}+3 \mathbf{w})$

$$
\begin{aligned}
& =2 \mathbf{u}-\mathbf{v}-3 \mathbf{w} \\
& =(4,-2,10,0)-(4,3,1,-1)-(-18,6,0,9) \\
& =(4-4+18,-2-3-6,10-1-0,0+1-9) \\
& =(18,-11,9,-8)
\end{aligned}
$$

(b) $3(\mathbf{x}+\mathbf{w})=2 \mathbf{u}-\mathbf{v}+\mathbf{x}$

$$
3 \mathbf{x}+3 \mathbf{w}=2 \mathbf{u}-\mathbf{v}+\mathbf{x}
$$

$$
\begin{aligned}
3 \mathbf{x}-\mathbf{x} & =2 \mathbf{u}-\mathbf{v}-3 \mathbf{w} \\
2 \mathbf{x} & =2 \mathbf{u}-\mathbf{v}-3 \mathbf{w} \\
\mathbf{x} & =\mathbf{u}-\frac{1}{2} \mathbf{v}-\frac{3}{2} \mathbf{w} \\
& =(2,1,5,0)+\left(-2, \frac{-3}{2}, \frac{-1}{2}, \frac{1}{2}\right)+\left(9,-3,0, \frac{-9}{2}\right) \\
& =\left(9, \frac{-11}{2}, \frac{9}{2},-4\right)
\end{aligned}
$$

- Thm 4.3: (Properties of additive identity and additive inverse)

Let \mathbf{v} be a vector in R^{n} and c be a scalar. Then the following is true.
(1) The additive identity is unique. That is, if $\mathbf{u}+\mathbf{v}=\mathbf{v}$, then $\mathbf{u}=\mathbf{0}$
(2) The additive inverse of \mathbf{v} is unique. That is, if $\mathbf{v}+\mathbf{u}=\mathbf{0}$, then $\mathbf{u}=-\mathbf{v}$
(3) $0 \mathrm{v}=\mathbf{0}$
(4) $c \mathbf{0}=\mathbf{0}$
(5) If $c \mathbf{v}=\mathbf{0}$, then $c=0$ or $\mathbf{v}=\mathbf{0}$
(6) $-(-\mathbf{v})=\mathbf{v}$

- Linear combination:

The vector \mathbf{x} is called a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{n}$, if it can be expressed in the form

$$
\mathbf{x}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{n} \mathbf{v}_{n} \quad c_{1}, c_{2}, \cdots, c_{n}: \text { scalar }
$$

- Ex 6:

Given $\mathbf{x}=(-1,-2,-2), \mathbf{u}=(0,1,4), \mathbf{v}=(-1,1,2)$, and $\mathbf{w}=(3,1,2)$ in R^{3}, find a, b, and c such that $\mathbf{x}=a \mathbf{u}+b \mathbf{v}+c \mathbf{w}$.

Sol:

$$
\begin{aligned}
&-b+3 c=-1 \\
& a+b=c=-2 \\
& 4 a+2 b+2 c=-2 \\
& \Rightarrow a=1, b=-2, c=-1
\end{aligned}
$$

Thus $\mathbf{x}=\mathbf{u}-2 \mathbf{v}-\mathbf{w}$

- Notes:

A vector $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ in R^{n} can be viewed as:

$$
\text { a } 1 \times n \text { row matrix (row vector): } \mathbf{u}=\left[u_{1}, u_{2}, \cdots, u_{n}\right]
$$

or
a $n \times 1$ column matrix (column vector): $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]$
(The matrix operations of addition and scalar multiplication give the same results as the corresponding vector operations)

Vector addition

$$
\begin{array}{rlrl}
\mathbf{u}+\mathbf{v} & =\left(u_{1}, u_{2}, \cdots, u_{n}\right)+\left(v_{1}, v_{2}, \cdots, v_{n}\right) & c \mathbf{u} & =c\left(u_{1}, u_{2}, \cdots, u_{n}\right) \\
& =\left(u_{1}+v_{1}, u_{2}+v_{2}, \cdots, u_{n}+v_{n}\right) & & =\left(c u_{1}, c u_{2}, \cdots, c u_{n}\right) \\
\mathbf{u}+\mathbf{v} & =\left[u_{1}, u_{2}, \cdots, u_{n}\right]+\left[v_{1}, v_{2}, \cdots, v_{n}\right] & c \boldsymbol{u} & =c\left[u_{1}, u_{2}, \cdots, u_{n}\right] \\
& =\left[u_{1}+v_{1}, u_{2}+v_{2}, \cdots, u_{n}+v_{n}\right] & & =\left[c u_{1}, c u_{2}, \cdots, c u_{n}\right] \\
\mathbf{u}+\mathbf{v} & =\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]+\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{c}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right] & c \mathbf{u}=c\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
c u_{1} \\
c u_{2} \\
\vdots \\
c u_{n}
\end{array}\right]
\end{array}
$$

5.1 Length and Dot Product in R^{n}

- Length:

The length of a vector $\mathbf{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ in R^{n} is given by

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

- Notes: The length of a vector is also called its norm.
- Notes: Properties of length
(1) $\|\mathbf{v}\| \geq 0$
(2) $\|\mathbf{v}\|=1 \Rightarrow \mathbf{v}$ is called a unit vector.
(3) $\|\mathbf{v}\|=0$ iff $\mathbf{v}=0$
(4) $\|c \mathbf{v}\|=\mid c\|\mathbf{v}\|$
- Ex 1:
(a) In R^{5}, the length of $\mathbf{v}=(0,-2,1,4,-2)$ is given by

$$
\|\mathbf{v}\|=\sqrt{0^{2}+(-2)^{2}+1^{2}+4^{2}+(-2)^{2}}=\sqrt{25}=5
$$

(b) In R^{3} the length of $\mathbf{V}=\left(\frac{2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}\right)$ is given by

$$
\|\mathbf{v}\|=\sqrt{\left(\frac{2}{\sqrt{17}}\right)^{2}+\left(\frac{-2}{\sqrt{17}}\right)^{2}+\left(\frac{3}{\sqrt{17}}\right)^{2}}=\sqrt{\frac{17}{17}}=1
$$

(\mathbf{v} is a unit vector)

- A standard unit vector in R^{n} :

$$
\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{n}\right\}=\{(1,0, \cdots, 0),(0,1, \cdots, 0),(0,0, \cdots, 1)\}
$$

- Ex:
the standard unit vector in $R^{2}:\{i, j\}=\{(1,0),(0,1)\}$
the standard unit vector in $R^{3}:\{i, j, k\}=\{(1,0,0),(0,1,0),(0,0,1)\}$
- Notes: (Two nonzero vectors are parallel)

$$
\mathbf{u}=c \mathbf{v}
$$

(1) $c>0 \Rightarrow \mathbf{u}$ and \mathbf{v} have the same direction
(2) $c<0 \Rightarrow \mathbf{u}$ and \mathbf{v} have the opposite direction

- Thm 5.1: (Length of a scalar multiple)

Let \mathbf{v} be a vector in R^{n} and c be a scalar. Then

$$
\|c \mathbf{v}\|=|c|\|\mathbf{v}\|
$$

Pf:

$$
\begin{aligned}
& \mathbf{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right) \\
& \Rightarrow c \mathbf{v}=\left(c v_{1}, c v_{2}, \cdots, c v_{n}\right) \\
& \|c \mathbf{v}\|=\left\|\left(c v_{1}, c v_{2}, \cdots, c v_{n}\right)\right\| \\
& =\sqrt{\left(c v_{1}\right)^{2}+\left(c v_{2}\right)^{2}+\cdots+\left(c v_{n}\right)^{2}} \\
& =\sqrt{c^{2}\left(v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}\right)} \\
& =|c| \sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} \\
& =|c|\|\mathbf{v}\|
\end{aligned}
$$

- Thm 5.2: (Unit vector in the direction of \mathbf{v})

If \mathbf{v} is a nonzero vector in R^{n}, then the vector $\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}$ has length 1 and has the same direction as \mathbf{v}. This vector \mathbf{u} is called the unit vector in the direction of v.

Pf:

$$
\begin{aligned}
& \mathbf{v} \text { is nonzero } \Rightarrow\|\mathbf{v}\| \neq 0 \Rightarrow \frac{1}{\|\mathbf{v}\|}>0 \\
& \Rightarrow \mathbf{u}=\frac{\mathbf{1}}{\|\mathbf{v}\|} \mathbf{v} \quad(\mathbf{u} \text { has the same direction as } \mathbf{v}) \\
& \|\mathbf{u}\|=\left\|\frac{\mathbf{v}}{\|\mathbf{v}\|}\right\|=\frac{1}{\|\mathbf{v}\|}\|\mathbf{v}\|=1 \quad \text { (u has length 1) }
\end{aligned}
$$

- Notes:
(1) The vector $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is called the unit vector in the direction of \mathbf{v}.
(2) The process of finding the unit vector in the direction of \mathbf{v} is called normalizing the vector \mathbf{v}.
- Ex 2: (Finding a unit vector)

Find the unit vector in the direction of $\mathbf{v}=(3,-1,2)$, and verify that this vector has length 1.
Sol:

$$
\begin{aligned}
& \mathbf{v}=(3,-1,2) \Rightarrow\|\mathbf{v}\|=\sqrt{3^{2}+(-1)^{2}+2^{2}}=\sqrt{14} \\
& \Rightarrow \frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{(3,-1,2)}{\sqrt{3^{2}+(-1)^{2}+2^{2}}}=\frac{1}{\sqrt{14}}(3,-1,2)=\left(\frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right) \\
& \because \sqrt{\left(\frac{3}{\sqrt{14}}\right)^{2}+\left(\frac{-1}{\sqrt{14}}\right)^{2}+\left(\frac{2}{\sqrt{14}}\right)^{2}}=\sqrt{\frac{14}{14}}=1 \\
& \therefore \frac{\mathbf{v}}{\|\mathbf{v}\|} \quad \text { is a unit vector. }
\end{aligned}
$$

- Distance between two vectors:

The distance between two vectors \mathbf{u} and \mathbf{v} in R^{n} is

$$
d(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|
$$

- Notes: (Properties of distance)
(1) $d(\mathbf{u}, \mathbf{v}) \geq 0$
(2) $d(\mathbf{u}, \mathbf{v})=0 \quad$ if and only if $\mathbf{u}=\mathbf{v}$
(3) $d(\mathbf{u}, \mathbf{v})=d(\mathbf{v}, \mathbf{u})$
- Ex 3: (Finding the distance between two vectors) The distance between $\mathbf{u}=(0,2,2)$ and $\mathbf{v}=(2,0,1)$ is

$$
\begin{aligned}
d(\mathbf{u}, \mathbf{v}) & =\|\mathbf{u}-\mathbf{v}\|=\|(0-2,2-0,2-1)\| \\
& =\sqrt{(-2)^{2}+2^{2}+1^{2}}=3
\end{aligned}
$$

5.2 Dot Product

- Dot product in R^{n} :

The dot product of $\mathbf{u}=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ is the scalar quantity

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

- Ex 4: (Finding the dot product of two vectors)

The dot product of $\mathbf{u}=(1,2,0,-3)$ and $\mathbf{v}=(3,-2,4,2)$ is

$$
\mathbf{u} \cdot \mathbf{v}=(1)(3)+(2)(-2)+(0)(4)+(-3)(2)=-7
$$

- Thm 5.3: (Properties of the dot product)

If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in R^{n} and c is a scalar, then the following properties are true.
(1) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
(2) $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
(3) $c(\mathbf{u} \cdot \mathbf{v})=(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})$
(4) $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$
(5) $\mathbf{v} \cdot \mathbf{v} \geq 0$, and $\mathbf{v} \cdot \mathbf{v}=0$ if and only if

$$
\boldsymbol{v}=0
$$

- Euclidean n-space:
R^{n} was defined to be the set of all order n-tuples of real numbers. When R^{n} is combined with the standard operations of vector addition, scalar multiplication, vector length, and the dot product, the resulting vector space is called Euclidean \boldsymbol{n}-space.
- Ex 5: (Finding dot products)

$$
\mathbf{u}=(2,-2), \mathbf{v}=(5,8), \mathbf{w}=(-4,3)
$$

(a) $\mathbf{u} \cdot \mathbf{v}$
(b) $(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$
(c) $\mathbf{u} \cdot(2 \mathbf{v})$
(d) $\|w\|^{2}$
(e) $\mathbf{u} \cdot(\mathbf{v}-2 \mathbf{w})$

Sol:
(a) $\mathbf{u} \cdot \mathbf{v}=(2)(5)+(-2)(8)=-6$
(b) $(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}=-6 \mathbf{w}=-6(-4,3)=(24,-18)$
(c) $\mathbf{u} \cdot(2 \mathbf{v})=2(\mathbf{u} \cdot \mathbf{v})=2(-6)=-12$
(d) $\|\mathbf{w}\|^{2}=\mathbf{w} \cdot \mathbf{w}=(-4)(-4)+(3)(3)=25$
(e) $\mathbf{v}-2 \mathbf{w}=(5-(-8), 8-6)=(13,2)$
$\mathbf{u} \cdot(\mathbf{v}-2 \mathbf{w})=(2)(13)+(-2)(2)=26-4=22$

- Ex 6: (Using the properties of the dot product)

Given $\mathbf{u} \cdot \mathbf{u}=39 \quad \mathbf{u} \cdot \mathbf{v}=-3 \quad \mathbf{v} \cdot \mathbf{v}=79$
Find $(\mathbf{u}+2 \mathbf{v}) \cdot(3 \mathbf{u}+\mathbf{v})$
Sol:

$$
\begin{aligned}
(\mathbf{u}+2 \mathbf{v}) \cdot(3 \mathbf{u}+\mathbf{v}) & =\mathbf{u} \cdot(3 \mathbf{u}+\mathbf{v})+2 \mathbf{v} \cdot(3 \mathbf{u}+\mathbf{v}) \\
& =\mathbf{u} \cdot(3 \mathbf{u})+\mathbf{u} \cdot \mathbf{v}+(2 \mathbf{v}) \cdot(3 \mathbf{u})+(2 \mathbf{v}) \cdot \mathbf{v} \\
& =3(\mathbf{u} \cdot \mathbf{u})+\mathbf{u} \cdot \mathbf{v}+6(\mathbf{v} \cdot \mathbf{u})+2(\mathbf{v} \cdot \mathbf{v}) \\
& =3(\mathbf{u} \cdot \mathbf{u})+7(\mathbf{u} \cdot \mathbf{v})+2(\mathbf{v} \cdot \mathbf{v}) \\
& =3(39)+7(-3)+2(79)=254
\end{aligned}
$$

- Thm 5.4: (The Cauchy - Schwarz inequality)

If \mathbf{u} and \mathbf{v} are vectors in R^{n}, then

$$
|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\|\|\mathbf{v}\| \quad(|\mathbf{u} \cdot \mathbf{v}| \text { denotes the absolute value of } \mathbf{u} \cdot \grave{\mathbf{y}}
$$

- Ex 7: (An example of the Cauchy - Schwarz inequality)

Verify the Cauchy - Schwarz inequality for $\mathbf{u}=(1,-1,3)$ and $\mathbf{v}=(2,0,-1)$

Sol:

$$
\begin{aligned}
& \mathbf{u} \cdot \mathbf{v}=-1, \quad \mathbf{u} \cdot \mathbf{u}=11, \quad \mathbf{v} \cdot \mathbf{v}=5 \\
& \Rightarrow|\mathbf{u} \cdot \mathbf{v}|=|-1|=1 \\
& \quad\|\mathbf{u}\|\|\mathbf{v}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}} \cdot \sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{11} \cdot \sqrt{5}=\sqrt{55} \\
& \therefore|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\| \mid\|\mathbf{v}\|
\end{aligned}
$$

- The angle between two vectors in R^{n} :

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}, 0 \leq \theta \leq \pi
$$

Opposite direction	$\mathbf{u} \cdot \mathbf{v}<\mathbf{0}$	$\mathbf{u} \cdot \mathbf{v}=\mathbf{0}$	$\mathbf{u} \cdot \mathbf{v}>\mathbf{0}$	Same
θ	「 θ	\uparrow_{θ}	$\angle \theta$	
	$\frac{\pi}{2}<\theta<\pi$	$\theta=\frac{\pi}{2}$	$0<\theta<\frac{\pi}{2}$	= 0
$\cos =-1$	$\cos <0$	$\cos =0$	$\cos >$	$\cos =$

- Note:

The angle between the zero vector and another vector is not defined.

- Ex 8: (Finding the angle between two vectors)

$$
\mathbf{u}=(-4,0,2,-2) \quad \mathbf{v}=(2,0,-1,1)
$$

Sol:

$$
\begin{aligned}
& \|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}=\sqrt{(-4)^{2}+0^{2}+2^{2}+(-2)^{2}}=\sqrt{24} \\
& \|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{2^{2}+(0)^{2}+(-1)^{2}+1^{2}}=\sqrt{6} \\
& \mathbf{u} \cdot \mathbf{v}=(-4)(2)+(0)(0)+(2)(-1)+(-2)(1)=-12 \\
& \Rightarrow \cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{-12}{\sqrt{24} \sqrt{6}}=-\frac{12}{\sqrt{144}}=-1 \\
& \Rightarrow \theta=\pi \quad \therefore \mathbf{u} \text { and } \mathbf{v} \text { have opposite directions. } \quad(\mathbf{u}=-2 \mathbf{v})
\end{aligned}
$$

- Orthogonal vectors:

Two vectors \mathbf{u} and \mathbf{v} in R^{n} are orthogonal if

$$
\mathbf{u} \cdot \mathbf{v}=0
$$

- Note:

The vector $\mathbf{0}$ is said to be orthogonal to every vector.

- Ex 10: (Finding orthogonal vectors)

Determine all vectors in R^{n} that are orthogonal to $\mathbf{u}=(4,2)$.
Sol:

$$
\left.\begin{array}{l}
\mathbf{u}=(4,2) \quad \text { Let } \mathbf{v}=\left(v_{1}, v_{2}\right) \\
\Rightarrow \quad \mathbf{u} \cdot \mathbf{v}
\end{array}=(4,2) \cdot\left(v_{1}, v_{2}\right) \quad\left[\begin{array}{lll}
4 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & \frac{1}{2} & 0
\end{array}\right]\right)
$$

- Thm 5.5: (The triangle inequality)

If \mathbf{u} and \mathbf{v} are vectors in R^{n}, then $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$ Pf:

$$
\begin{aligned}
\|\mathbf{u}+\mathbf{v}\|^{2} & =(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v}) \\
& =\mathbf{u} \cdot(\mathbf{u}+\mathbf{v})+\mathbf{v} \cdot(\mathbf{u}+\mathbf{v})=\mathbf{u} \cdot \mathbf{u}+2(\mathbf{u} \cdot \mathbf{v})+\mathbf{v} \cdot \mathbf{v} \\
& =\|\mathbf{u}\|^{2}+2(\mathbf{u} \cdot \mathbf{v})+\|\mathbf{v}\|^{2} \leq\|\mathbf{u}\|^{2}+2|\mathbf{u} \cdot \mathbf{v}|+\|\mathbf{v}\|^{2} \\
& \leq\|\mathbf{u}\|^{2}+2\|\mathbf{u}\|\|\mathbf{v}\|+\|\mathbf{v}\|^{2} \\
& =(\|\mathbf{u}\|+\|\mathbf{v}\|)^{2} \\
\therefore\|\mathbf{u}+\mathbf{v}\| & \leq\|\mathbf{u}\|+\|\mathbf{v}\|
\end{aligned}
$$

- Note:

Equality occurs in the triangle inequality if and only if the vectors \mathbf{u} and \mathbf{v} have the same direction.

- Thm 5.6: (The Pythagorean theorem)

If \mathbf{u} and \mathbf{v} are vectors in R^{n}, then \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}
$$

- Dot product and matrix multiplication:

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \quad \begin{aligned}
& \text { (A vector } \mathbf{u}=\left(u_{1}, u_{2}, \cdots, u_{n}\right) \text { in } R^{n} \\
& \text { is represented as an } n \times 1 \text { column matrix) }
\end{aligned}
$$

$$
\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\left[u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}\right]
$$

5.4 Cross Product

- Cross product in R^{3} :

The cross product of $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ is the vector quantity

$$
\begin{gathered}
\mathbf{w}=\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\left(\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right|,-\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|,\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|\right) \\
\mathbf{w}=\mathbf{u} \times \mathbf{v}=\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right)
\end{gathered}
$$

- Ex 11: (Finding the cross product of two vectors)

The cross product of $\mathbf{u}=(1,2,0)$ and $\mathbf{v}=(3,-2,4)$ is

$$
\mathbf{w}=\mathbf{u} \times \mathbf{v}=(8,-4,-8)
$$

- Thm 5.10: Relationships involving cross product and dot product

Let \mathbf{u}, \mathbf{v} and \mathbf{w} be 3 vectors in R^{3}, then:
(a) $\mathbf{u} \cdot(\mathbf{u} \times \mathbf{v})=0 \quad(\mathbf{u} \times \mathbf{v}$ is orthogonal to $\mathbf{u})$
(b) $\mathbf{u} \cdot(\mathbf{u} \times \mathbf{v})=0 \quad(\mathbf{u} \times \mathbf{v}$ is orthogonal to $\mathbf{v})$
(c) $\|\mathbf{u} \times \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2} \quad$ (Lagrange' sidentity)
(d) $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$ (relationship between cross and dot products)
(e) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{v} \cdot \mathbf{w}) \mathbf{u}$ (relationship between cross and dot products)

- Thm 5.11: Properties of involving cross product

Let \mathbf{u}, \mathbf{v} and \mathbf{w} be 3 vectors in R^{3} and k a scalar, then:
(a) $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
(b) $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=(\mathbf{u} \times \mathbf{v})+(\mathbf{u} \times \mathbf{w})$
(c) $(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=(\mathbf{u} \times \mathbf{w})+(\mathbf{v} \times \mathbf{w})$
(d) $k(\mathbf{u} \times \mathbf{v})=(k \mathbf{u}) \times \mathbf{v}=\mathbf{u} \times(k \mathbf{v})$
(e) $\mathbf{u} \times \mathbf{0}=\mathbf{0} \times \mathbf{u}=\mathbf{0}$
(f) $\mathbf{u} \times \mathbf{u}=\mathbf{0}$

- Thm 5.12: Scalar triple product Let \mathbf{u}, \mathbf{v} and \mathbf{w} be 3 vectors in R^{3}, then:
$V=\mathbf{w} \bullet(\mathbf{u} \times \mathbf{v})=\left|\begin{array}{lll}u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right|=$ Volume of the parallelepiped determined by the 3 vectors

