Chapter 4

!'_ Vector Spaces 4xlaiVl Gleladl

4.1 Vectors In R

4.2 Vector Spaces

4.3 Subspaces of Vector Spaces

4.4 Spanning Sets and Linear Independence
4.5 Basis and Dimension




4.1 VectorsinR"

= An ordered n-tuple:

a sequence of n real number (x,,X,,:--,X,)

n
= n-space: R

the set of all ordered n-tuple
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n=1
n=2
n=3
n=4

R = 1-space
= set of all real number

R® = 2-space
= set of all ordered pair of real numbers (x;,x,)

R®= 3-space

= set of all ordered triple of real numbers (x, x,, x3)

R = 4-space

= set of all ordered quadruple of real numbers (X, X5, X3, X4)
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= Notes:

(1) An n-tuple (x,, x,,---, X.) can be viewed as a point in R’

with the x;’s as Its coordinates.

(2) An n-tuple (

X:(Xl’xzi'”’

=

Xl’XZ"”’

a point

v

(00)

X.) can be viewed as a vector

X.) In R"with the x;’s as its components.

(%, %,)

a vector

v
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4.2 Vector Spaces

= Vector spaces:
Let V be a set on which two operations (vector addition and

scalar multiplication) are defined. If the following axioms are
satisfied for every u, v, and w in V and every scalar (real number)
c and d, then V is called a vector space.

Addition:

(1) utvisinVtoo (closed under addition)
(2) utv=v+u
(3) ut(v+w)=(u+v)+w
(4) V has a zero vector 0 such that for every u in V, u+0=u
(5) For every u in V, there is a vector in V denoted by —u

such that u+(—u)=0
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Scalar multiplication:
(6) cu IsinVtoo (closed under multiplication by a scalar).

(7) c(u+v)=cu+cv
(8) (c+d)u=cu+du
(9) c(du)=(cd)u

(10) 1(u) =u
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= Note:
(1) A vector space consists of four entities:

a set of vectors, a set of scalars, and two operations

V  nonempty set
c - scalar
+ (u,v)=u+v  Vector addition

e (c,u)=cu scalar multiplication

(V, = .) Is then called a vector space

(2) Vv ={0} : zero vector space
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= Examples of vector spaces:

(1) n-tuple space:|R"
(Ups Uy ooy U )+ (V, Voo,V ) = (U + Vg, Uy +Vs, 0+, U +V, ) vector addition
k(u,u,,---,u)=(ku,ku,,---, ku.) scalar multiplication

(2) Matrix spacej vV = M (the set of all mxn matrices with real values)

Exp: : (m=n=2)

ull u12 Vll V12 ull + Vll u12 7l V12 A
{ + = vector addition

u21 u22 V21 V22 u21 i V21 u22 an V22
ull u12 kull ku12 R :
K = scalar multiplication
u21 u22 kuZl ku22
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(3) n-th degree polynomial space:
(the set of all real polynomials of degree n or less)

V =P, (%)

p(x)+a(x) = (a, +b,) +(a, +b)x+---+(a, +b,)x"

kp(x) = ka, + ka,x +---+ka X"

(4) Function space:

V = c(—o0,00)

(the set of all real-

valued continuous functions defined on the entire real line.)

(T+9)(x) = 1(x)+g(x)
(kT )(x) = ki (x)
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(F+9))=1T(X)+a(X)  (kf)(x)=kf (X)

AY AY AY
f+g
g \
oo [TOTED L ¢ /ﬂ{\x

£ 1 () ~ £ 1 f(x) 0 | >
| )  x | X 1 —f(x){
X X
(a) (b) (¢)

Figure 4.1.2
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= Thm 4.4: (Properties of scalar multiplication)

Let v be any element of a vector space V, and let ¢ be any
scalar. Then the following properties are true.

(1) Ov=0

(2) c0=0

(3) Ifcv=0, thenc=0 or v=0
(4) (-)v=-v
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= Notes: To show that a set 1s not a vector space, you need
only find one axiom that is not satisfied.

» Ex 6: The set of all integer is not a vector space.

HEFTRE VRS
(L)@ =1 gV (itis not closed under scalar multiplication)

scalar. noninteger
integer

= Ex 7: The set of all second-degree polynomials Is not a vector space.

Pf:  Let p(x)=x" and q(Xx)=—-x"+x+1
= p(X)+q(X) =x+1egV
(it is not closed under vector addition)
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“Hay Qs
V=R?=the set of all ordered pairs of real numbers defined as:
- vector addition: (u,,u,)+(v,,Vv,) = (U, +Vv,,u, +V,)
{ - scalar multiplication:c(u,,u,) = (cu,,0)
--------- Verify V is not a vector space.

Sol:
+11,)=10)= (11 Condition (10) is not satisfied
."the set (together with the two given operations) Is
not a vector space
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» EXAMPLE 7 A Set That Is Not a Vector Space
Let V = R? and define addition and scalar multiplication operations as follows: If
u= (uy, ur) and v= (vy, v,), then define
u+v=(u; + v, ux + v3)
and if k is any real number, then define
ku = (ku,, 0)

For example, ifu = (2,4),v = (-3, 5),and k = 7, then

ut+v=02+(-3),4+35 =(-1L9

ku="7u=(7-2,0) = (14, 0)
The addition operation is the standard one from R?, but the scalar multiplication is not.
In the exercises we will ask you to show that the first nine vector space axioms are satisfied.
However, Axiom 10 fails to hold for certain vectors. For example, ifu = (u, u,) is such
that u, # 0, then

lu=1(uy, u2) = (1-u1,0) = (u1,0) #u

Thus, V is not a vector space with the stated operations.
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4.3 Subspaces of Vector Spaces

= Subspace:
If | (V,+e) :avector space
The vectors u
W i :11nd:;111;e inuizr,ebll:(t) tt-he vectors
—< 4 : a nonempty subset """
WcV
(W,+,¢) : avector space (under the operations of addition and

scalar multiplication defined in V)
— Then W is a subspace of V
= Trivial subspace:

Every vector space V has at least two subspaces.

(1) Zero vector space {0} is a subspace of V.
(2) V is asubspace of V.
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= Thm 4.5: (Test for a subspace)
If W is a nonempty subset of a vector space V, then W is

a subspace of V if and only if the following conditions hold.

: (1) If u andv arein W, then u+v is in W (closed under addition).

(2) If uis in W and c is any scalar, then cu is in W (closed under
; multiplication by a scale*

Figure 4.2.3 The vectors
u + v and ku both lie in the same
plane as u and v.
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« Ex: Subspace of R?
(1) oy 0=(0,0)
(2) Linesthrough the origin

(3) R°
Subspaces of R? Subspaces of R?
o {0} o {0}
] EX - S U bSpace Of R3 e Lines through the origin e  Lines through the origin
e R’ e Planes through the origin
e R?

1) {0y  0=(0,0,0)
(2) Linesthrough the origin
(3) Planes through the origin

(4) R’
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= Ex 2: (A subspace of M, ,,)
Let W be the set of all 2 X2 symmetric matrices. Show that

W is a subspace of the vector space M, ,, with the
standard

Soloperations of matrix addition and scalar multiplication.
“WcM,, M,,:vector sapces

Let AL A, eW (A=A A =A)
AeW,A eW=(A+A) =A +A =A+A (A +AcW)
keR,AeW = (kA)" =KkAT =KA (kAeW)

W is a subspace of M,_,
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« Ex 3: (The set of singular matrices is not a subspace of M, . ,)
Let W be the set of singular matrices of order 2. Show that

W iIs not a subspace of M, , with the standard operations.

Sol:

1 O 0 O
A= ceW B= ceW

1 0
. A+B ={ } z W
sl : .
singular matrices

The matrices are known to be singular if their

W2 iS not a Subspace Qf |\/|2><2 determinant is equal to the zero
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= Ex 4: (The set of first-quadrant vectors is not a subspace of R?)
Show that W ={(x,, x,) : x, > 0and x, > 0} , with the standard

operations, is not a subspace of R’

Sol:
Let u=(1,1)eW

c(-u=(-1)11)=(-1,-1)eW

~.W is not a subspace of R”

wa

(not closed under scalar
multiplication)

- qu,n

X

1,-1)

Figure 4.2.4 W 1s not closed

under scalar multiplication.
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4.4 Spanning Sets and Linear Independence

= | Inear combination:

A vector v Ina vector space V is calleda linear combination of
the vectors u,,u,,---,u, InV If v can be written in the form

V =CU; +CU, +...+CU, C1,C,e++,Cy -SCalars
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= Ex 2-3: (Finding a linear combination)
v, =(1,2,3). v, =(0,4,2) v,=(-1,0,1)
Prove (a) w=(1,1,1) isa linear combination of v,,v,, Vv,

- (b) w=(1,-2,2) isnot a linear combination of v, Vv,,V,
ol:

a) W=¢CV,+C,V, +CV
1 T =2 LR 3 s

(1,1,1)=c,(1,2,3)+c,(012)+c,(-101)
= (C, —C,, 2C,+C,, 3¢, +2C, + C,)

C, e
S®20, S0 =1
SIS Re s S
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IR

NS = '

— L] 11

0
1

Guass—Jordan Elimination

— =R, (O =L e, S

A 4

BN W=

O 8

(this system has infinitely many solutions)

t=1

=W =2V, -3V, +V,

GO
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(b)

S | R
2 b o 0 ~ Guass—Jordan Elimination s |0 1 2 _4
SRR O EUSOI AT ey

— this system has no solution (.- 0= 7)
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= the span of a set: span (S)

If S={v,, V,,..., v, } IS a set of vectors In a vector space V,
then the span of S is the set of all linear combinations of
the vectors in S,

span(S) ={c,v, +C,V, +---+C.V, | V¢, € R}

(the set of all linear combinations of vectors in S)

= a spanning set of a vector space:

If every vector In a given vector space can be written as a
linear combination of vectors in a given set S, then S is
called a spanning set of the vector space.
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(a) Span {v} is the line through the (b) Span{v,, v,} is the plane through the
origin determined by v. origin determined by v, and v,.
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= Notes:
span (S) =V
— S spans (generates) V
V is spanned (generated) by S
S Is a spanning set of V

= Notes:
(1) span(¢) = {0}
(2) S cspan(S)
(3) Sl’ Sz cV
S, € 5, = span(S,;) < span(sS,)
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= Linear Independence (L.l.) and Linear Dependence (L.D.):

S={v,v,,---, v} :asetof vectors in a vector space V
c,V,+C,V,+:-+C Vv, =0

(1) If the equation has only the trivial solution (c, =c, =---=c, =0)
then S iscalled linearly independent.

(2) If the equation has a nontrivial solution (i.e., not all zeros),
then S iscalled linearly dependent.
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= Notes:
(1) ¢ is linearly independent

(2) 0€S = Sis linearly dependent.
(3) v=0={v}is linearly independent
4) S, c5S,

S, Is linearly dependent= S, is linearly dependent

S, Is linearly independent = S, is linearly independent
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= Ex 8: (Testing for linearly independent)

Determine whether the following set of vectors in R*is L.1I. or L.D.
S={1,23)(0,1,2),(-2,0,1)}

\Z1 v,

Sol:

CIV TG NASL OV = D=, W20 G

0
1 O
2 "1

0

Vv
3 c)

—2cy=10

=0

SCREN? CA-TCEN=

Gauss - Jordan Elimination

N\
/

MOS0
0 1 0

o 0y 1

=, =¢,=C, =0 (only thetrivial solution)

= S is linearly independent

32/67



= EX 10: (Testing for linearly independent)
Determine whether the following set of vectors in 2 X 2

matrix space iIs L.l. or L.D.

S

Sol:
C,V{+C,V,+CaVy =0

il 3 0 1 0] [0 0
“lo 11702 1172 0|70 o
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= 2¢;+3C,+ c3=0

Cy =0
2¢,+2¢c;=0
C;+C, =0
o | P2 ] TOF 1 0 0]0]
Ew0p"010 Gauss - Jordan Elimination 0 1 00
0 2 2|0 0 0 1|0
150701 LORSO SN0,

= C; = C, = C;= 0 (This system has only the trivial solution.)
— S is linearly independent.
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4.5 Basis and Dimension

Generating (" Linearly
Sets(span V) ases Indegetndent
ets

If{(a) Sspans V (i.e., span(S)=V)
— |(b) Sis linearly independent

« Basis:

V : avector space
S={vy, V,, ...,V }V

Intersection-gblilll

—> Then S iIs called a basis for V

= Notes:
(1) D is a basis for {0}

(2) the standard basis for R3:
{i,j,k} 1=(1,0,0), j=(0,1,0), k=(0,0, 1)
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(3) the standard basis for R :
{e,, e, ...,e.} €.=(1,0,...,0),e,=(0,1,...,0), e,=(0,0,...,1)

Ex: R*  {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}
(4) the standard basis for mxn matrix space:
{ Ej | 1<ism, 1<j<n }

Ex: for M,, 2x2 matrix space:

1 0|{0 1|(0 0O||O0 O
{o OHO 0H1 OHO J
(5) the standard basis for P, (X):

0 e iy

Ex: Py;(x) {1,x, x? x3}
36/



= Thm 4.9: (Uniqueness of basis representation)

If S={v,,v,, v, } isabasisfora vector space V, then every

vector in V can be written in one and only one way as a linear

combination of vectors in S.
Pf:

> S 1sa basis :>{ - SRR =

2. Ss linearly independent
wspan(S) =V Let v=cvHC,Vt.. HCV,

V =b,v,+b,v,+.. . +b v,
= 0 = (c;—b)v,+(c,— by)v,+...+(c,— b, )V,
"+ S Is linearly independent

= Cc,=b;,C=h,,...,c.=b, (l.e., uniqueness)
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= Thm 4.10: (Basis and linear dependence)
RS = {vl, v2,~-,vn} IS a basis for a vector space V, then every

set containing more than n vectors in V is linearly dependent.

i
Let S, ={u;, uU,,...,u.},m>n

s span(S) =V

u, =C,v, +C,Vv, +---+C,V,

[PV LR L RS Rl N T A
u,=¢,v,+C_V,+:---+C V_
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Let k,u,+k,u,+...+k u =0

= dyvytdyvot.. . +dv,=0  (where d; = ¢; K +CpKot. .. +C; K )
e SHSILY]

— d=0 Vi e CuKi +CpK,+--+Cpk, =0

C,.K, +CpK, +---+¢C, k =0

2m''m

C.K +C.K,+---+cCc k =0

-+ According to Thm 1.1: If the homogeneous system has fewer
equations than variables, then it must have infinitely many solution.

m > n = k,u,;+k,u,+...+k_ u. = 0 has nontrivial solution
— S, Is linearly dependent
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= Thm 4.11: (Number of vectors in a basis)
If a vector space V has one basis with n vectors, then every
basis for V has n vectors. (All bases for a finite-dimensional

vector space has the same number of vectors.)

Pf:
S={Vy, Vy, ..., V. }

bl two bases for a vector space
S'={u,, u,, ...,u.}

S isa basis | Thm.4.10 ]
- = n>m
S"isL.I.

. —
S isL.l |Tmato !
= NnN<m

S' i1s a basis

J
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= Finite dimensional:

A vector space V Is called finite dimensional,

If it has a basis consisting of a finite number of elements.
= Infinite dimensional:

If a vector space V is not finite dimensional,

then it Is called infinite dimensional.

« Dimension:

The dimension of a finite dimensional vector space V is

defined to be the number of vectors in a basis for V.

V: a vector space S: a basis for V

=symbol: dim(V) = #(S) (the number of vectors in S)
41/



dim(V) =n

_ Linearly
Generating ( B5ges ) Independent
Sets Sets

(2) dim(V) =n, ScV #S)>n  #OS)=n #(S)<n

= Notes:

(1) dim({0}) = 0 =#2)

S P ageneratingset = #(S)>n
S :talL.l set = #(S)<n
S  abasis = #(S)=n

(3) dim(V) =n,W isasubspace of V = dim(W) <n
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= EXP:

(1) Vector space R" = basis {e,,&,, ..., €.}
= dim(R") =n

(2) Vector space M, = basis {E;; | 1<i<m, 1<j<n}
= dim(M,,,.,)=mn

(3) Vector space P, (x) = basis {1, x, X%, ..., x"}
= dim(P,(x)) = n+1

(4) Vector space P(x) = basis {1, x, x?, ...}
= dim(P(x)) =«
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- ExX 9: (Finding the dimension of a subspace)
(a) W={(d, c—d, c): c and d are real numbers}
(b) W={(2b, b, 0): b is a real number}

Sol: (Note: Find a set of L.I. vectors that spans the subspace)

(@) (d,c—d,c)=c(0,1,1)+d(1,-1,0)
=S5S={0,1,1),(1,-1,0)}(SisL.l. and S spans W)
— S is a basis for W
= dim(W) = #(S) =2

(b) - (2b,b,0)=b(21,0)
=S5S=4{(2,1,0)} spans W and Sis L.I.
= SIS a basis for W

= dim(W) = #(S) = 1
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= Ex 10: (Finding the dimension of a subspace)
Let W be the subspace of all symmetric matrices in M,,.
What is the dimension of W?

vl ¥
R
oo fy e 2 Yo

= SisabasisforW = dim(W) =#(S) =3

a,b,cER}
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= Thm 4.12: (Basis tests in an n-dimensional space)
Let V be a vector space of dimension n.
(1) If S={v,,v,,---,v_} isalinearly independent set of
vectors in V, then S is a basis for V.
(2) If S= {vl,vz,---,vn} spans V, then S is a basis for V.

dim(V) =n
Img: If we have a space V of
dimension n, and a set of vectors S of : Linearly
number equal n, then for the set of GenSer? fing Bases | Independent
vectors S to be a Basis of V, it is Ay Sets

sufficient to show that S is L.I. or that
it spans V.

#(S) >N #(S) <n
#(S) A 46/



Our next goal is to extend the concepts of “basis vectors” and “coordinate systems” to
general vector spaces, and for that purpose we will need some definitions. Vector spaces
fall into two categories: A vector space V is said to be finite-dimensional if there is a
finite set of vectors in V that spans V and is said to be infinite-dimensional if no such set
exists.

DEFINITION 1 If S = {v, v2, ..., v, } s aset of vectors in a finite-dimensional vector
space V, then § is called a basis for V if:

(a) S spansV.
(b) S is linearly independent.
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> Coordinates in R3

(a) We showed in Example 3 that the vectors
V1 = (11 23 1)1 V2 = (21 91 0)5 V3 = (3$ 33 4)

form a basis for R?. Find the coordinate vector of v = (5, —1, 9) relative to the
basis § = {v;, v, v3}.

(b) Find the vector v in R? whose coordinate vector relative to S is (v)s = (—1, 3, 2).

Solution (a) To find (v)g we must first express v as a linear combination of the vectors
in S; that 1s, we must find values of ¢;, ¢», and ¢3 such that

V= C1V] + C2V2 + C3V3
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or, in terms of components,
(51 _13 9) — Cl(la 21 1) + 62(21 91 0) + 63(33 33 4)
Equating corresponding components gives

ci1+2co+3¢c3;= 5
2¢1 +9¢y + 3¢ = —1

C1 +4cy; = 9
Solving this system we obtain ¢; = 1, c; = —1, ¢3 = 2 (verify). Therefore,
(V)S — (11 _11 2)

Solution (b) Using the definition of (v) g, we obtain

v=(—=1)vi + 3v; + 2v;
= (=D(1,2,1) +3(2,9,0) +2(3,3,4) = (11,31,7) <
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