
Chapter 4 

Vector Spaces الفضاءات الاتجاهية
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4.1  Vectors in R
n

a sequence of n real number ),,,( 21 nxxx 

◼ An ordered n-tuple:

the set of all ordered n-tuple

▪ n-space:  R
n

2/43



n = 4

= set of all ordered quadruple of real numbers

R
4  

= 4-space

),,,( 4321 xxxx

R
1  

= 1-space

     = set of all real number

n = 1

n = 2 R
2  

= 2-space

     = set of all ordered pair of real numbers ),( 21 xx

n = 3 R
3 
= 3-space

= set of all ordered triple of real numbers ),,( 321 xxx

◼ Ex:
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◼ Notes:

▪ Ex:

a point

( )21, xx

a vector

( )21, xx

( )0,0

(1) An n-tuple                        can be viewed as a point in R
n 

with the xi’s as its coordinates.

(2) An n-tuple                        can be viewed as a vector 

                                    in Rn with the xi’s as its components.

),,,( 21 nxxx 

),,,( 21 nxxx 

),,,( 21 nxxxx =
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4.2 Vector Spaces

◼  Vector  spaces:

Let V be a set on which two operations (vector addition and 

scalar multiplication) are defined. If the following axioms are 

satisfied for every  u, v, and w in V and every scalar (real number) 

c and d, then V is called a vector space.

Addition:

(1)  u+v is in V too    (closed under addition)

(2)  u+v=v+u

(3)  u+(v+w)=(u+v)+w

(4)  V has a zero vector 0 such that for every u in V, u+0=u

(5) For every u in V, there is a vector in V denoted by –u 

      such that u+(–u)=0     
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Scalar multiplication:

(6)        is in V too  (closed under multiplication by a scalar). uc

(7)                                  vuvu ccc +=+ )(

(8)     uuu dcdc +=+ )(

(9)     uu )()( cddc =

(10)        uu =)(1
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◼ Note:

(1) A vector space consists of four entities:

(2)    :V = 0 zero vector space

V：nonempty set

 c：scalar

( , )

( , )c c

= +

=

u v u v

u u

vector addition

scalar multiplication

( )•+,,V is then called a vector space

a set of vectors, a set of scalars, and two operations
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◼ Examples of vector spaces:

(1) n-tuple space: Rn

 ),,,(),,,(),,,( 22112121 nnnn vuvuvuvvvuuu +++=+ 

),,,(),,,( 2121 nn kukukuuuuk  =

(2) Matrix space:           (the set of all m×n matrices with real values)
nmMV =

Exp: ：(m = n = 2)










++

++
=








+









22222121

12121111

2221

1211

2221

1211

vuvu

vuvu

vv

vv

uu

uu









=









2221

1211

2221

1211

kuku

kuku

uu

uu
k

vector addition

scalar multiplication

vector addition

scalar multiplication
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(3) n-th degree polynomial space:                

                   (the set of all real polynomials of degree n or less)

)(xPV n=

n

nn xbaxbabaxqxp )()()()()( 1100 ++++++=+ 

n

n xkaxkakaxkp +++= 10)(

(4) Function space:                                 (the set of all real-

valued continuous functions defined on the entire real line.)

)()())(( xgxfxgf +=+

),( −= cV

)())(( xkfxkf =
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)()())(( xgxfxgf +=+ )())(( xkfxkf =



▪ Thm 4.4: (Properties of scalar multiplication)

Let v be any element of a vector space V, and let c be any

scalar. Then the following properties are true.

vv

0v0v

00

0v

−=−

===

=

=

)1(  (4)

or    0  then , If  (3)

  (2)

0  (1)

cc

c
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▪ Ex 7: The set of all second-degree polynomials is not a vector space.

Pf:      Let                  and
2)( xxp = 1)( 2 ++−= xxxq

Vxxqxp +=+ 1)()(

(it is not closed under vector addition)

R,V 
2
11

V=
2
1

2
1 )1)(( (it is not closed under scalar multiplication)

 
scalar

Pf:

▪ Ex 6:  The set of all integer is not a vector space.

integer
noninteger

12/67



◼ Ex 8:

V=R2=the set of all ordered pairs of real numbers defined as:

- vector addition: ),(),(),( 22112121 vuvuvvuu ++=+

- scalar multiplication: )0,(),( 121 cuuuc =

)1 ,1()0 ,1()1 ,1(1 =
the set (together with the two given operations) is 

    not a vector space



---------Verify V is not a vector space.

Sol:

13/43

Condition (10) is not satisfied
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4.3 Subspaces of Vector Spaces

◼ Subspace:

),,( •+VIf                      : a vector space









VW

W 
: a nonempty subset

),,( •+W ：a vector space (under the operations of addition and 

    scalar multiplication defined in V)

 Then W is a subspace of V

▪ Trivial subspace:

    Every vector space V  has at least two subspaces.

(1) Zero vector space {0} is a subspace of  V.

(2)  V is a subspace of  V.
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◼ Thm 4.5: (Test for a subspace)

If W is a nonempty subset of a vector space V, then W  is 

a subspace of V if and only if the following conditions hold.

(1) If  u and v  are in W, then  u+v  is in W (closed under addition).

(2) If u is in W and c is any scalar, then cu is in W (closed under

       multiplication by a scalar).
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◼ Ex:    Subspace of  R3

◼ Ex:   Subspace of  R2

  ( )0 0,            (1) =00

origin he through tLines   (2)

2   (3) R

origin he through tPlanes   (3)

3   (4) R

  ( )0 0, 0,            (1) =00

origin he through tLines   (2)
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▪  Ex 2: (A subspace of M2×2)

       Let W be the set of all 2×2 symmetric matrices. Show that 

         W is a subspace of the vector space M2×2, with the 

standard

         operations of matrix addition and scalar multiplication.

sapcesvector  :      2222  MMW

Sol:

) (  Let  221121 AA,AA WA,A TT ==

 )( 21212121 AAAAAAWAW,A TTT +=+=+

 )( kAkAkAWA,Rk TT ==

22 of  subspace  a  is  MW

)( 21 WAA +

)( Wk A 
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WBA 







=+

10

01

222   of  subspace  anot    is  MW

◼ Ex 3: (The set of singular matrices is not a subspace of M2×2)

     Let W be the set of singular matrices of order 2. Show that

       W is not a subspace of  M2×2 with the standard operations.

WB,WA 







=








=

10

00

00

01

Sol:
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singular matrices
The matrices are known to be singular if their 

determinant is equal to the zero



▪ Ex 4: (The set of first-quadrant vectors is not a subspace of R
2
)

     Show that                                                    , with the standard 

       operations, is not a subspace of R
2
.

  Sol:

W= )1 ,1(Let   u

   of  subspace  anot    is  2RW

}0 and 0:),{( 2121 = xxxxW

( ) ( )( ) ( ) W−−=−=− 1 ,11 ,111 u

(not closed under scalar

    multiplication)

21/67



4.4 Spanning Sets and Linear Independence

kkccc uuuv +++= 2211

form  in the written becan   if  in     vectorsthe

 ofn combinatiolinear  a called is   space  vector  ain   A vector  

21 vuuu

v

V,,,

V

k

▪  Linear combination: 

scalars : 21 k,c,,cc 
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▪ Ex 2-3: (Finding a linear combination)

321

321

321

,, ofn combinatiolinear  anot  is  2,2)(1,   (b)           

 ,, ofn combinatiolinear  a is  (1,1,1)   (a)  Prove

1,0,1)(   (0,1,2)   (1,2,3)

vvvw

vvvw

vvv

−=

=

−===

Sol:

332211   (a) vvvw ccc ++=

( ) ( ) ( ) ( )1012103211,1,1 321 ,,c,,c,,c −++=

)23 ,2 ,( 3212131 ccccccc +++−=

 

123

1          2

1            

  

321

21

31

=++

=+

=−



ccc

cc

cc
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













 −



1123

1012

1101

⎯⎯⎯⎯⎯⎯⎯ →⎯ − nEliminatioJordan Guass

















−

−

0000

1210

1101

321

1

32 vvvw +−=
=t

tctctc =−−=+= 321   , 21  , 1

(this system has infinitely many solutions)
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332211      

)(

vvvw ccc

b

++=

















−

−



2123

2012

1101

  ⎯⎯⎯⎯⎯⎯⎯ →⎯ − nEliminatioJordan Guass

















−

−

7000

4210

1101

)70(solution    no  has  system     this  

332211 vvvw ccc ++
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If S={v1, v2,…, vk} is a set of vectors in a vector space V, 

then the span of  S  is the set of all linear combinations of 

the vectors in S,                                

▪ the span of a set:  span (S)

=)(Sspan  

)in    vectorsof nscombinatiolinear  all ofset   (the

2211

S

Rcccc ikk +++ vvv 

▪ a spanning set of a vector space:

If every vector in a given vector space can be written as a 

linear combination of vectors in a given set S, then S is 

called a spanning set of the vector space.
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 0=)(   (1) span

)(   (2) SspanS 

)()(       

,   (3)

2121

21

SspanSspanSS

VSS





▪ Notes:

VS

SV

V S

VS

 ofset  spanning a is      

by  )(generated spanned is      

)(generates spans   

)(span       



=

▪ Notes:
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dependent.linearly  called is          then

zeros), allnot  (i.e.,solution   nontrivial a hasequation   theIf (2)

t.independenlinearly  called is          then

)0(solution    trivialonly the hasequation   theIf (1) 21

S

S

ccc k ==== 

 

0vvv

vvv

=+++

=

kk

k

ccc

S





2211

21 ,,,

▪  Linear Independence (L.I.) and Linear Dependence (L.D.):

: a set of vectors in a vector space V

30/43
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مرتبطة خطيا



tindependenlinearly    is     (1) 

dependent.linearly    is  (2) SS  0

  tindependenlinearly    is  (3) v0v   

21   (4) SS 

dependentlinearly   is dependent linearly   is 21 SS 

t independenlinearly   is t  independenlinearly   is 12 SS 

▪ Notes:
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( ) ( ) ( ) 1 0, 2,,2 1, 0,,3 2, 1, −=S

▪ Ex 8:  (Testing for linearly independent)

0   23

0          2

02            

321

21

31

=++

=++

=−

ccc

cc

cc

=++ 0vvv 332211 ccc

Sol:

Determine whether the following set of vectors in R
3
 is L.I. or L.D.















 −



0123

0012

0201

⎯⎯⎯⎯⎯⎯⎯ →⎯ nEliminatioJordan   - Gauss

















0100

0010

0001

( )solution  trivialonly the   0321 === ccc

tindependenlinearly   is S

v1         v2             v3
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◼ Ex 10: (Testing for linearly independent)

       Determine whether the following set of vectors in 2×2 

         matrix space  is L.I. or L.D.

































=

02

01
,

12

03
,

10

12
S

Sol:









=








+








+









00

00

02

01

12

03

10

12
321 ccc

c1v1+c2v2+c3v3 = 0

v1          v2          v3
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(This system has only the trivial solution.)c1 = c2 = c3= 0

S is linearly independent.

 2c1+3c2+  c3 = 0

c1                 = 0

        2c2+2c3 = 0

c1+ c2          = 0



















0011

0220

0001

0132



















0000

0100

0010

0001

⎯⎯⎯⎯⎯⎯⎯ →⎯ nEliminatioJordan   - Gauss
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35

4.5 Basis and Dimension

◼  Basis:

V：a vector space





)(

)(

b

a S spans V  (i.e.,  span(S) = V )

S is linearly independent

Generating

Sets(span V)
Bases

Linearly

Independent

Sets

 Then S is called a basis for V

▪ Notes:

(1) Ø is a basis for {0}

(2) the standard basis for R3:

{i, j, k}    i = (1, 0, 0),  j = (0, 1, 0),  k = (0, 0, 1)

S ={v1, v2, …, vn}V

If Intersection-التقاطع
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(3) the standard basis for R
n 

:

{e1, e2, …, en}    e1=(1,0,…,0), e2=(0,1,…,0), en=(0,0,…,1)

Ex:  R4 {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}

Ex: for M22    matrix space:










































10

00
,

01

00
,

00

10
,

00

01

22

(4) the standard basis for mn matrix space:

{ Eij | 1im , 1jn }

(5) the standard basis for Pn(x): 

{1, x, x2, …, xn}

Ex:   P3(x) {1, x, x2, x3}



37/ 

◼ Thm 4.9: (Uniqueness of basis representation)

     If                                 is a basis for a vector space V, then every

       vector in V can be written in one and only one way as a linear 

       combination of vectors in S.

 nS vvv ,,, 21 =

Pf:





  basis a is  S
1. span(S) = V

2. S is linearly independent

 span(S) = V Let v = c1v1+c2v2+…+cnvn

v = b1v1+b2v2+…+bnvn

 0 = (c1–b1)v1+(c2 – b2)v2+…+(cn – bn)vn

tindependenlinearly  is  S

(i.e., uniqueness) c1= b1 , c2= b2 ,…, cn= bn
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◼ Thm 4.10: (Basis and linear dependence)

   If                                 is a basis for a vector space V, then every

       set containing more than n vectors in V  is linearly dependent.

 nS vvv ,,, 21 =

Pf: 

S1 = {u1, u2, …, um} , m > nLet

VSspan =)(

uiV

nnmmmm

nn

nn

ccc

                    

ccc

ccc

vvvu

vvvu

vvvu

+++=

+++=

+++=









2211

22221122

12211111


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L.I. is S

  di=0    i i.e.

0

                   

0

0

2211

2222121

1212111

=+++

=+++

=+++

mnmnn

mm

mm

kckckc

kckckc

kckckc









Let k1u1+k2u2+…+kmum= 0

(where di = ci1k1+ci2k2+…+cimkm) d1v1+d2v2+…+dnvn= 0

According to Thm 1.1: If the homogeneous system has fewer 

equations than variables, then it must have infinitely many solution.



m > n  k1u1+k2u2+…+kmum = 0  has nontrivial solution

 S1 is linearly dependent
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◼ Thm 4.11: (Number of vectors in a basis)

     If a vector space V has one basis with n vectors, then every

       basis for V  has n vectors. (All bases for a finite-dimensional

       vector space has the same number of vectors.)

Pf:

S ={v1, v2, …, vn}

S'={u1, u2, …, um}
two bases for a vector space

mn

mn
S

S

mn
S

S

Thm

Thm

=























10.4.

10.4.

 basis a is  '

L.I. is   

L.I. is  '

 basis a is  
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◼ Finite dimensional:

       A vector space V  is called finite dimensional,

       if it has a basis consisting of a finite number of elements.

◼ Infinite dimensional:

       If a vector space V  is not finite dimensional,

       then it is called infinite dimensional.

◼ Dimension:

       The dimension of a finite dimensional vector space V  is

       defined to be the number of vectors in a basis for V.

V: a vector space S: a basis for V

symbol: dim(V) = #(S) (the number of vectors in S)
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▪  Notes:

(1) dim({0}) = 0 = #(Ø)

(2) dim(V) = n , SV

S：a generating set     #(S)  n

S：a L.I. set                #(S)  n

S：a basis                    #(S) = n

(3) dim(V) = n , W  is a subspace of V      dim(W)  n 

Generating

Sets
Bases

Linearly

Independent

Sets

#(S) > n #(S) = n #(S) < n

dim(V) = n
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◼ Exp:

(1) Vector space  Rn       basis {e1 , e2 ,  , en}

(2) Vector space Mmn   basis {Eij | 1im , 1jn}

(3) Vector space Pn(x)   basis {1, x, x2,  , xn}

(4) Vector space P(x)     basis {1, x, x2, }

 dim(Rn) = n

 dim(Mmn)=mn

 dim(Pn(x)) = n+1

 dim(P(x)) = 
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◼ Ex 9:  (Finding the dimension of a subspace)

       (a) W={(d, c–d, c):  c and d are real numbers}

       (b) W={(2b, b, 0):  b is a real number}

Sol: (Note: Find a set of L.I. vectors that spans the subspace)

(a) (d, c– d, c) = c(0, 1, 1) + d(1, – 1, 0)

 S = {(0, 1, 1) , (1, – 1, 0)} (S is L.I. and S spans W)

 S is a basis for W

 dim(W) = #(S) = 2

 S = {(2, 1, 0)} spans W  and  S is L.I.

 S is a basis for W

 dim(W) = #(S) = 1

( ) ( )0,1,20,,2 bbb =(b)
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▪ Ex 10: (Finding the dimension of a subspace)

      Let W  be the subspace of all symmetric matrices in  M22.

      What is the dimension of  W?

Sol:





















= Rcba

cb

ba
W ,,









+








+








=









10

00

01

10

00

01
cba

cb

ba


































=

10

00
,

01

10
,

00

01
S spans W  and S is L.I. 

 S is a basis for W  dim(W) = #(S) = 3



46/ 

◼ Thm 4.12: (Basis tests in an n-dimensional space)

         Let V  be a vector space of dimension n.

         (1) If                                 is a linearly independent set of

                 vectors in V,  then  S  is a basis for  V.

         (2) If                                 spans V,   then S  is a basis for V.

Generating

Sets Bases
Linearly

Independent

Sets

dim(V) = n

#(S) > n

#(S) = n
#(S) < n

 n21 ,,,S vvv =

 n21 ,,,S vvv =

Imp:    If we have a space V of 

dimension n, and a set of vectors S of 
number equal n, then for the set of 
vectors S to be a Basis of V, it is 
sufficient to show that S is L.I. or that 
it spans V.
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