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a b s t r a c t 

The raspberry-like strontium tungstate microspheres supported on reduced graphene oxide nanosheets 

(rGOSs@SrWO 4 ) were prepared by a hydrothermal method and it was applied to the electrocatalytic 

sensing of catechol. The as-prepared rGOSs@SrWO 4 composite was characterized by XRD, Raman, FESEM, 

EDX, EIS, and voltammetric techniques. Morphology studies reveal the uniform wrapping of raspberry- 

like SrWO 4 microstructure by thin sheets of rGOSs and the composite possesses large surface area and 

abundant catalytic active sites. The rGOSs@SrWO 4 composite modified screen-printed multi-conventional 

electrode (SPME) was fabricated which was found to exhibit extraordinary electrocatalytic activity and ex- 

cellent selectivity towards the detection of catechol. The rGOSs@SrWO 4 /SPME displayed a linear range of 

0.034–672.64 μM and detection limit of 7.34 nM using differential pulse voltammetry as signal read-out. 

Furthermore, the electrode was durable, reproducible and repeatable. The practical utility of the method 

was demonstrated in green tea and drinking water samples. 

© 2018 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved. 
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. Introduction 

Catechol (1, 2-hydroxybenzene) is a basic isomer of benzene-

iol, which is naturally distributed ubiquitously in plants. It has

rimary role in biological and industrial production activities, such

s fur dyes, lubricating oils, photographic rubbers, and pharma-

euticals [1,2] . However, catechol is less degradable and toxic to

he water and environmental resources [3] . As the human pop-

lation increases, the need for the production of more indus-

rial products, such as pesticides, cosmetics, medicines, tanning re-

overs, flavoring agents, photography chemicals is increases. As

 result, industrial sewages are constantly released that contam-

nates water resources such as, rivers, ponds, lakes, and oceans

4] . Because catechol is more attractive to the researchers to de-

ect catechol even in low concentration and at the same time cate-

hol to be detected in a reliable, simple and rapid manner [5,6] .

arious methods are already in practice, such as capillary zone

lectrophoresis [7] , synchronous fluorescence [8] , chemilumines-

ence [9] , high-performance liquid chromatography [10] , and elec-
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rochemical methods [6,11] . Compared with traditional analytical

ethods, electrochemical technique is cheap, robust, rapid, high

ensitive, and selective [12–14] . 

Recently, increasing interest has been focused on the develop-

ent of catechol sensors based on metal oxide electrode modi-

ers [15–17] . In recent years, metal tungstate (MWO 4 , M: Ca 2 + ,
r 2 + , Ba 2 + , Pb 2 + etc.) have attracted much attention due to their

nteresting structural and chemical properties. They have promis-

ng applications in optics and photocatalysis. On the other hand,

arbonaceous materials have high conductivity, unique mechani-

al, excellent flexibility, good corrosion resistance and high sur-

ace area and hence they are good support materials for metal

ungstates [18–20] . Yet, mostly applied materials in electrochem-

cal applications are graphite, porous carbon, n-doped graphene,

nd activated carbon [21–23] . In recent years, many of transition

etal oxides/hydroxides/sulfides supported on carbonaceous mate- 

ials were developed for electrochemical sensing applications [24–

8] . Specially, graphene supported SrWO 4 attracted considerable

ttention in many fields because SrWO 4 materials are low-cost,

ighly stable, and holding excellent electrocatalytic property for

everal important reactions [29] . 

Here, we have synthesized strontium tungstate (SrWO 4 ) micro-

pheres enveloped reduced graphene oxide nanosheets (rGOSs) via
ights reserved. 

https://doi.org/10.1016/j.jtice.2018.05.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtice
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtice.2018.05.001&domain=pdf
mailto:smchen1957@gmail.com
mailto:majmalaliksu@gmail.com
https://doi.org/10.1016/j.jtice.2018.05.001


216 S. Manavalan et al. / Journal of the Taiwan Institute of Chemical Engineers 89 (2018) 215–223 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic representation for the hydrothermal synthesis of rGOSs@SrWO 4 
and its electrochemical application to determining of catechol in green tea and wa- 

ter samples. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

3

3

 

s  

s  

o  

p  

3  

6  

d  

(  

(  

S  

n  

s  

t

 

t  

h  

G  

1  

s  

m  

a  

t  

c  

t  

t  

1  

b  

h  

b  

a  
hydrothermal approach. The resulting composite holds excellent

conductivity and very good intrinsic electrocatalytic properties. Be-

sides, an electrochemical response for catechol at rGOSs@SrWO 4 

shows reliable sensitivity and selectivity. The practical feasibil-

ity of the method was acquired in green tea and drinking water

samples using rGOSs@SrWO 4 composite modified screen-printed

multi-conventional electrode (SPME). 

2. Experimental section 

2.1. Reagents, materials and instruments 

Graphite (powder, < 20 μm), Na 2 WO 4 .2H 2 O, Sr(NO 3 ) 3 , catechol,

folic acid and all other reagents including solvents were pur-

chased from Sigma-Aldrich and used as received. Sodium dihy-

drogen phosphate and disodium hydrogen phosphate were used

to prepare pH. Electrochemical studies were performed in a SPME

three-electrode system, which contains printed carbon as a work-

ing electrode (area 0.071 cm 

2 ), silver as a reference electrode and

printed carbon as a counter electrode. The SPME were purchased

from Zensor R&D Co., Ltd., Taipei, Taiwan. 

Cyclic voltammetry (CV) and differential pulse voltammetry

(DPV) experiments were performed using CHI 1205A and CHI 900

electrochemical workstations (CH Instruments, Inc., U.S.A), respec-

tively. All the electrochemical experiments are conducted at ambi-

ent conditions. Surface morphological studies were carried out us-

ing field emission scanning electron microscope (FESEM) (H-7600,

Hitachi-Japan). X-ray diffraction (XRD) studies were performed in

a XPERT-PRO (PANalytical B.V., The Netherlands) diffractometer us-

ing Cu K α radiation ( k = 1.54 Å). Raman spectra have been acquired

by Micro-Raman spectrometer (RENISHAW in via system, U.K) by

a 514.4 nm He/Ne laser. Energy-dispersive X-ray (EDX) spectra was

recorded using Horiba Emax x-act (sensor + 24 V = 16 W, resolution

at 5.9 keV = 129 eV) and EIM6ex Zahner (Kronach, Germany) was

used for electrochemical impedance spectroscopy (EIS) studies. 

2.2. Preparation of GOSs and synthesis of rGOSs@SrWO 4 composite 

1 g of graphite oxide was synthesized by modified Hummer’s

method [30] . It was exfoliated in water through ultrasonication

for 2 h to get graphene oxide nanosheets (GOSs). Then, the GOSs

solution was subjected to centrifugation for 30 min at 40 0 0 rpm

to remove any unexfoliated graphite oxide. Thereafter, 5 mM of

Sr(NO 3 ) 2 and 5 mM of Na 2 WO 4 were added to a 25 mL of as-

prepared GOSs solution and stirred for 5 min. Further, 1 mM folic

acid was added, and the pH of the whole mixture was adjusted

to pH 7.0 by slowly adding 0.1 M NaOH. The whole mixture was

transferred into a 50 mL Teflon-lined autoclave and hydrothermally

treated at 180 °C for 24 h. A white precipitate was obtained which

was separated, washed (water and ethanol) and freeze-dried to

yield powder of rGOSs@SrWO 4 composite. 

2.3. Fabrication of rGOSs@SrWO 4 composite modified electrode 

The rGOSs@SrWO 4 composite (1 mg mL −1 ) was redispersed

in water/ethanol (1:2; v/v) mixture through ultrasonication for

10 min. 8 μL dispersion of rGOSs@SrWO 4 was drop-casted at the

working electrode surface of SPME using micropipette, and dried

at ambient conditions. The amount of rGOSs@SrWO 4 covered on

the work electrode surface was 8 μg and the covering area was

0.071 cm 

2 . Moreover, GOSs modified SPME was also prepared un-

der same conditions for control experiments ( Fig. 1 ). 
. Results and discussions 

.1. Physicochemical properties of rGOSs@SrWO 4 

The XRD patterns of GOSs and rGOSs@SrWO 4 composite are

hown in Fig. 2 A. The XRD curve of GOSs displays a characteristic

harp peak at 2 θ of 11.5 ° that can be correlated to the (001) planes

f GOSs [31] . Interestingly, the XRD pattern of rGOSs@SrWO4 dis-

lays several additional diffraction peaks at 16.11 °, 26.92 °, 30.01 °,
2.10 °, 37.42 °, 43.90 °, 45.96 °, 48.12 °, 52.28 °, 55.98 °, 57.33 °, 59.92 °,
2.54 °, 67.46 °, 69.92 °, 72.14 °, 75.08 °, 77.81 °, and 79.50 ° that are in-

exed to (101), (112), (004), (200), (211), (213), (204), (220), (116),

312), (224), (215), (008), (323), (400), (208, 316), (332), (404), and

420) planes. These planes are matched with the crystal facets of

rWO 4 having tetragonal phase crystalline (D 4 h) structure (JCPDS

o.08–0490) [32] . Besides, the peak at 11.5 ° observed for GOSs was

hifted to the expected 2 θ angle of 24.85 ° (002), which is due to

he reduction of GO to rGOSs [33] . 

Next, the composite was further examined by Raman spec-

roscopy as shown in ( Fig. 2 B). Both GOSs and rGOSs@SrWO 4 ex-

ibit the characteristic D (related to defects in graphitic lattice) and

 bands (originates from the stretching of in-plane sp 

2 atoms) at

328 and 1609 cm 

−1 , respectively [34] . The D to G band inten-

ity ratio ( I D /I G ) was 0.933. In addition, to D and G bands, the Ra-

an spectrum of rGOSs@SrWO 4 displays additional peaks, which

re explained as follows. The bands at 50–150 cm 

−1 are assigned

o SrO 8 polyhedra structure. The first Raman active mode B g at 78

m 

−1 correspond to the symmetric bending vibration of O-Sr-O,

hen the second active mode E g at 99 cm 

−1 is linked to free mo-

ion of SrO 8 polyhedra structure, and the third active band E g at

36 cm 

−1 is ascribed to symmetric stretching of O-Sr-O bond. The

ands located above 150 cm 

−1 are characteristic of the WO 4 tetra-

edron structure, those at 195 cm 

−1 are free rotation A g mode. The

ands A g /B g located at 30 0–40 0 cm 

−1 are respectively, asymmetric

nd symmetric bending of the E g /B g bands at 790–850 cm 

−1 are
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Fig. 2. (A) XRD and (B) Raman spectra of GOSs and rGOSs@SrWO 4 composite. 

Fig. 3. FESEM images of rGOSs@SrWO 4 (A-B), GOSs (C), and SrWO 4 (D). EDX spectra (E) and corresponding quantitative analysis (F) of rGOSs@SrWO 4 . 

W  

s  

9  

s

w  

t

 

a  

t  

m  

p  

b  

s  

o  

o  

o  

T  

3

3

 

e  
-O asymmetric stretching of WO 4 tetrahedra structure. Finally, a

ymmetric stretching of Ag mode (–O ← W → O) can be located at

34 cm 

−1 . All the characteristics Raman bands of SrWO 4 are con-

istent with previous reports [35] . In addition, the value of I D /I G 
as increased to 1.14, suggesting the increased defect density in

he composit. 

The FESEM image of rGOSs@SrWO 4 composite, (A, B), GOSs (C),

nd SrWO 4 (D) are depicted in Fig. 3 . The SEM image of GO shows

ypical wrinkled sheet-like morphology. Microsphere-like porous

orphology was observed for the SrWO 4 . The rGOSs@SrWO 4 dis-

lays raspberry-like SrWO 4 microsphere wrapped and covered

y layered GOSs ( Fig. 3 A, B). Thus, the hydrothermal-assisted
 r  
elf-assembly of SrWO 4 on GOSs substrate leads to the formation

f GOSs supported SrWO 4 nanocomposite. The average particle size

f SrWO 4 microsphere was 8 to 10 μm. The EDX spectra ( Fig. 3 E)

f rGOSs@SrWO 4 shows the expected elements C, O, Sr and W.

he quantitative elemental analysis provides weight percentages of

5.15%, 18.45%, 25.14%, and 21.23% for C, O, Sr and W respectively. 

.2. Electrochemical behavior of rGOSs@SrWO 4 

EIS analysis was performed to understand the electrode-

lectrolyte interfacial properties. The impedance spectra were rep-

esented as Nyquist plots. The semicircle part at higher frequencies
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Fig. 4. (A) EIS spectra of GOSs/SPME (a), and rGOSs@SrWO 4 /SPME (b) Inset: Randles equivalent circuit model, R s = electrolyte resistance, R ct = charge transfer resistance 

C dl = double layer capacitance and Z w = Warburg impedance. (B) CVs of GOSs/SPME, and rGOSs@SrWO 4 /SPME in 0.1 M KCl + 5 mM [Fe(CN) 6 ] 
3 −/4 − at scan rate of 50 mVs −1 . 

(C) CVs of rGOSs@SrWO 4 /SPME in 0.1 M KCl + 5 mM [Fe(CN) 6 ] 
3 −/4 − at different scan rates (a to j; 0.02–0.2 Vs −1 ) and corresponding linear calibration plot (D). 
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is related to electron transfer limited process and the linear part

at lower frequency region is related to diffusion-limited process.

Fig. 4 A shows the EIS curves obtained at GOSs (a) and

rGOSs@SrWO 4 (b) modified electrodes in 0.1 M KCl containing

5 mM Fe(CN) 6 
3-/4 −. The frequency range was 0.1 Hz–1 MHz and the

amplitude was 5 mV. Randles equivalent circuit model was used

to fit the experimental data (inset to Fig. 4 A). The parameters are

electrolyte resistance ( R s ), charge transfer resistance ( R ct ), double

layer capacitance ( C dl ) and Warburg impedance ( Z w 

), respectively.

The R ct values obtained at GO (curve a) and rGOSs@SrWO 4 (curve

b) film modified electrodes are 105 �, and 16 �. The EIS result in-

dicates resistance at rGOSs@SrWO 4 has been considerably reduced,

which is ascribed to the excellent electronic conductivity property

of rGOSs@SrWO 4 composite. 

The electrochemical behavior of GOSs/SPME and

rGOSs@SrWO 4 /SPME was probed by cyclic voltammetry. 0.1 M KCl

was used as supporting electrolyte and 5 mM [Fe(CN) 6 ] 
3 −/4 − was

used as redox probe. The CV curves of GOSs/SPME and

rGOSs@SrWO 4 /SPME shows a pair of well-defined redox peaks

related to the redox reaction of [Fe(CN) 6 ] 
3 −/4 − ( Fig. 4 B). The peak-

to-peak potential separation ( �E p ) values are 248, and 134 mV

at GOSs/SPME and rGOSs@SrWO 4 /SPME respectively. Compared

to GOSs/SPME, the rGOSs@SrWO 4 /SPME shows higher redox peak

currents and smaller peak-to-peak potential separation. The insu-

lating nature of GOSs blocks the diffusion of [Fe(CN)6] 3 −/4 − and

increased the internal resistance at the electrode interface (curve

a). On the other hand, the higher electronic conductivity property

of rGOSs@SrWO /SPME facilitates highly enhanced redox peak
4 a  
urrents and the observed low �E p indicates the composite

onsiderably promotes the electron transfer reactions. 

Fig. 4 C shows the CVs of rGOSs@SrWO 4 /SPME towards

Fe(CN) 6 ] 
3 −/4 − at varied scan rates from 0.03–0.3 V s −1 and corre-

ponding plot between peak current and square root of scan rate

s given in Fig. 4 D. The electrochemical active surface area of the

odified SPME was assessed by substituting slope value of differ-

nt scan rate plot in Randles–Sevcik Eq. (1) [36] . 

 p = 2 . 72 ∗ 10 

5 n 

3 / 2 A D 

1 / 2 C υ1 / 2 (1)

ere, i p is peak current, n is number of electrons involved in the

edox reaction, transfer, υ is scan rate (Vs −1 ), A is electrochemical

ctive area (cm 

2 ), D is the diffusion coefficient (cm 

2 s −1 ), C is the

oncentration of [Fe(CN) 6 ] 
3 −/4 − (mol cm 

−3 ). The electrochemically

ctive surface areas were calculated to be 0.021, and 0.086 cm 

2 for

OSs/SPME and rGOSs@SrWO 4 /SPME respectively. Thus, the active

rea of rGOSs@SrWO 4 /SPME is 4.1 fold higher than the area of

OSs/SPME, indicating that the rGOSs@SrWO 4 /SPME is suitable for

lectrocatalytic sensing applications. 

.3. Electrocatalysis of catechol at rGOSs@SrWO 4 

Next, the electrocatalytic performance of rGOSs@SrWO 4 to-

ards catechol was studied by CV. Fig. 5 A displays the CVs of

nmodified, SrWO 4 , GOSs, and rGOSs@SrWO 4 modified SPMEs

n phosphate buffer (pH 7.0) and scan rate of 0.05 V s −1 was

pplied. As shown in figure, the rGOSs@SrWO 4 /SPME exhibited

 well-defined redox peaks ascribed to the redox reaction of
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Fig. 5. (A) CVs obtained at unmodified SPME (a), SrWO 4 /SPME (b), GOSs/SPME (c), and rGOSs@SrWO 4 /SPME (d) in phosphate buffer (pH 7.0) containing 5 μM catechol at the 

scan rate of 0.05 V s −1 . (B) Different electrodes vs. corresponding peak currents. (C) CVs of the rGOSs@SrWO 4 /SPME in 0.1 M PB solution (pH 7) with various concentrations 

of catechol (a to h; 10–650 μM) at 0.05 Vs −1 scan rate. (D) peak current vs. concentration of catechol. 
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atechol. In this reaction 1,2-dihydroxybenzene (catechol) is con-

ert to benzoquinone. GOSs/SPME displays feeble redox peaks,

hile unmodified SPME does not shows any obvious redox peaks.

or instance, rGOSs@SrWO 4 displays 2.69, 2.92 and 6.76 fold larger

edox peak currents than GOSs/SPME, SrWO 4 /SPME and unmodi-

ed SPME, respectively ( Fig. 5 B). Clearly, rGOSs@SrWO 4 nanocom-

osite modification on SPME surface enables amplified current sig-

al as well as accelerated electron transfer. The synergic effect be-

ween rGOSs and SrWO 4 could have significant contribution to the

bserved improved electrocatalysis; this effect is well established

or graphene-based nanocomposites. 

Fig. 5 C presented the CVs obtained at rGOSs@SrWO 4 /SPME in

.1 M phosphate buffer (pH 7.0) containing varied concentrations

f catechol. As shown in figure, the oxidation ( I pa ) and reduction

eak currents ( I pc ) were increased linearly, as the concentration of

atechol increases. The plot between peak currents and concentra-

ion of catechol exhibits good linearity ( Fig. 5 D). The correspond-

ng regression equations are, Fig. 5 D, I pa (μA) = 0.1615 (μM) + 0.166

 R 2 = 0.996) and I pc (μA) = 0.1509 (μM) – 0.166 ( R 2 = 0.993). 

.4. Kinetic studies 

Fig. 6 A shows the CVs of rGOSs@SrWO 4 /SPME towards 5 μM

atechol at different scan rates. Both faradaic and non-faradaic
urrents are increased as the scan rate increases from 0.02

o 0.22 V s −1 . The oxidation peak shifted towards positive po-

ential, while the reduction peak shifted towards negative po-

ential. Besides, the redox peak current and square root of

he scan rate exhibited good linearity, a characteristic behav-

or of a diffusion controlled electrocatalytic process ( Fig. 6 B).

he linear regression equations for the corresponding scan rate

lot are I pa (μA) = 3.356 ν1/2 (Vs −1 ) 1/ 2 + 130.06; R 2 = 0.993 and

 pc (μA) = –9.330 ν1/2 (Vs −1 ) 1/ 2 + 129.45; R 2 = 0.995. Also, the ox-

dation peak potential ( E p ) shifts to higher positive potentials

ith the increase in scan rate ( Fig. 6 C). A plot of E p vs square

oot of the scan rate displays a linear relationship which im-

lies that catechol electrocatalytic oxidation process is chemically

eversible ( Fig. 6 C). 

.5. Determination of catechol by DPV 

Fig. 7 A presents the DPV curves obtained at

GOSs@SrWO 4 /SPME towards varied concentrations of catechol in

hosphate buffer (pH 7.0) as supporting electrolyte. The optimized

arameters used to record DPV are, pulse amplitude = 0.05 V, pulse

idth = 0.05 s, pulse period = 0.2 s, sampling width = 0.0167 s and

uite time = 4 s. Sharp electrocatalytic response was observed for

ach concentrations of catechol. The I pa increases linearly as the
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Fig. 6. Shows CVs obtained at rGOSs@SrWO 4 /SPME in phosphate buffer (pH 7.0) containing 5 μM catechol at different scan rates (a to k; 0.02 to 0.22 V s −1 ). (B) plot of I pa 

and I pc versus square root of scan rates. (C) Plot of E p versus square root of scan rates. 

Fig. 7. (A) DPVs of rGOSs@SrWO 4 /SPME towards varied concentrations of catechol (a–q; 0.034–672.64 μM) in phosphate buffer (pH 7.0) and corresponding linear regression 

plot between peak currents (μA) and concentrations of catechol. 
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concentrations of catechol increases. A linear calibration between

plot between concentration of catechol and corresponding peak

current displays good linearity ( Fig. 7 B). The regression equa-

tion was obtained as, [ I ] (μA) = 0.5089 [catechol] (μA/μM) + 1.78;

R ²= 0.997. The linear range was 0.034–672.64 μM. The sensitivity

was 7.167 μAμM 

−1 cm 

−2 . The detection limit was calculated to

be 7.34 nM. The limit of detection (LOD) was calculated using
he formula, LOD = 3 s b /S (where, s b = standard deviation of blank

ignal and S = sensitivity). The limit of quantification (LOQ) of

he method was 24.5 nM. The linear range, detection limit and

ensitivity of the electrodes were compared with previous reports

 Table 1 ). From the table, we infer that rGOSs@SrWO 4 /SPME film

odified electrode delivered either comparable or better analytical

erformance over existing modified electrodes. Remarkably, the
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Table 1 

Comparison of catechol sensing performance at rGOSs@SrWO 4 /SPME with previous 

literature. 

Electrodes Linear range (μM) LOD (nM) Reference 

CNS a -CNT b 1–200 90.0 [37] 

COOH-CNT/CT c /Au 5–900 89.0 [15] 

N -CNT@CNF d 0.08–350 20.0 [38] 

Polyimide/RGO e -Au 2–1289 20.0 [39] 

Pd/Cu-CNTs 1–280 60.0 [40] 

Au/EGPE f 0.5–100 27.0 [16] 

MOF-ERGO g 0.1–566 100.0 [41] 

Graphene oxide 1–350 182.0 [42] 

Meso-Co 3 O 4 1–500 100.0 [43] 

Chitin/graphite 0.3–110.6 85.0 [44] 

N, S -graphene 10–70 150.0 [17] 

NiO/MWCNT 7.4–56 150.0 [45] 

rGOSs@SrWO 4 0.034–672.64 7.34 This work 

a carbon nitride nanosheets, b carbon nanotube, c chitosan, d carbon nanofibers, 
e reduced graphene oxide, f exfoliated graphite paper electrode, g electrochemically 

reduced graphene oxide. 
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etection limit was 7.34 nM, which reveals that the rGOSs@SrWO 4 

reatly contributed to the signal amplification. 

.6. Selectivity and stability of the sensor 

The selectivity of the catechol sensor is more important espe-

ially in the presence of high concentration of hydroquinone (HQ),

ince it could easily interfere with the oxidation signal of catechol

ue to the similar structural features (isomer) and chemical ac-

ivity. The selectivity of rGOSs@SrWO 4 -modified electrode towards

aried concentrations of catechol in presence of fixed concentra-

ion of HQ (0.2 mM) had been analyzed and the results are pre-

ented in Fig. S1A. It can be seen that the oxidation peaks of HQ

nd catechol are displayed at two different potentials with wide

otential gap. Evidently, the voltammetric response of HQ was not

nterfered the response of catechol. A linear dependence of the ob-

erved oxidation peak current ( I pa ) with varied concentration of

atechol (5 − 35 μM) was observed even in presence of high con-

entrations of HQ. 

In addition, biological molecules, and metal ions based in-

erfering compounds are tested for their possible interferences

ith our catechol sensing system. The electrocatalytic response of

odified electrode towards 25 μM of catechol and each 0.2 mM

f quercetin (QT), dopamine (DA), ascorbic acid (AA), uric acid

UA), acetaminophen (AAP), glucose (Glu), epinephrine (EP), nore-

inephrine (NEP), Cu 

2 + , Na + , I −, Ni 2 + , Zn 

2 + , Cl −, Cd 

2 + , Hg 2 + , and
ig. 8. (A) DPVs of rGOSs@SrWO 4 composite modified SPME containing various concent

can rate of 0.05 V s −1 , (B) Corresponding calibration plot for peak currents vs. [catechol]/
r 2 + were also examined (Fig. S2A). As shown in figure, none of

hese compounds shown detectable signals. Possibly, the π stack-

ng interaction between rGOSs and phenyl moiety of catechol pro-

ides selectivity. This π interaction avoids interference from com-

ounds, which are do not having phenyl moieties. Besides, the

resence of edge-functionalized rGOSs makes the electrode at-

ractive for para and ortho directed pieces in benzodiol isomeric

ixtures (catechol and hydroquinone). Nevertheless, our results

ndicated the voltammetric signal of hydroquinone is different

rom the signal of catechol, thus allowing us to discriminate their

ignals. Thus, the selectivity study indicates rGOSs@SrWO 4 /SPME

olds excellent selectivity in presence of possible biological com-

ounds as well as metal ions. 

.7. Stability, repeatability and reproducibility 

In order to determine storage stability of rGOSs@SrWO 4 com-

osite modified SPME, its electrocatalytic response towards 5 μM

atechol was monitored every day. The modified SPME was kept

tored in phosphate buffer (pH 7.0) at 4 °C when not in use. During

0 days storage period, the modified electrode presented well de-

ned catalytic response. About 96.87% of the initial response cur-

ent was retained over 10 days of its continuous use revealing good

torage stability (Fig. S2B). Next, repeatability and reproducibility

f the modified electrode have been tested towards 5 μM catechol

n phosphate buffer (pH 7.0). The modified SPME exhibited appre-

iable repeatability with relative standard deviation of 3.24% for 5

epetitive measurements carried out using single SPME. In addi-

ion, it exhibits promising reproducibility of 3.74% for the five in-

ependent measurements carried out in five different composite

odified SPMEs. 

.8. Real sample analysis 

The practical utility of rGOSs@SrWO 4 composite modified elec-

rode was demonstrated in drinking water and green tea sam-

les ( Figs. 8 and 9 ). The drinking water and green tea sam-

les are found to be catechol free through DPV analysis. Then,

 known amount of catechol was spiked prior to analysis. The

piked catechol concentrations were added different additions.

ext, the amount of catechol spiked in the samples (drinking

ater + catechol and green tea + catechol) was tested using the

GOSs@SrWO 4 composite modified electrode. The sensor was de-

ivered sharp peaks as lab sample ( Figs. 8 A and 9 A). The lin-

ar ranges (drinking water + catechol = 0.035–270 μM and green
rations of catechol containing drinking water samples in PB solution (pH 7.0) at a 

μM. 
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Fig. 9. (A) DPVs of rGOSs@SrWO 4 composite modified SPME containing various concentrations of catechol containing green tea samples in phosphate buffer (pH 7.0) at a 

scan rate of 0.05 V s −1 , (B) Corresponding calibration plot for peak currents vs. concentrations of catechol (25 –150 μM). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Table 2 

Determination of catechol (CT) in drinking water and green tea samples using rGOSs@SrWO 4 composite modified electrode by DPV and HPLC method. 

Sample Spiked (μM) Found # (μM) Accuracy (%) Found ∗ (μM) Accuracy (%) 

CT 0.0 0.0 – 0.0 –

CT + drinking 

water 

10.0 9.94 99.4 9.43 94.3 

20.0 19.84 99.2 19.34 96.7 

CT + green 

tea 

10.0 9.94 99.4 9.27 92.7 

20.0 19.83 99.15 19.11 95.5 

# Detected by Waters Alliance, model 2695 HPLC (Empower, version 3). ∗Detected by rGOSs@SrWO 4 composite modified electrode by DPV ( n = 3). 
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tea + catechol = 25–150 μM), and limit of detection values are pre-

sented in Table S1. Hence, the rGOSs@SrWO 4 composite modified

electrode has good practical feasibility. We established a sensitive

electrochemical detection method for the quantification of catechol

in water and green tea samples. 

The practical ability of the sensor was compared to traditional

HPLC method and DPV. The catechol sensor was evaluated in cat-

echol spiked drinking water and green tea samples from the labo-

ratory using DPV method. The recovery values were calculated us-

ing the standard addition method. In addition, the catechol was

also detected by traditional HPLC analysis. The detected values of

catechol by HPLC and electrochemical methods were tabulated in

Table 2 . It can be seen that the results are showed good accu-

racy to the results obtained by HPLC method for detection of

catechol ( Table 2 ). The result clearly validates that the proposed

rGOSs@SrWO 4 composite modified electrode can be used for real-

time sensing of catechol. 

4. Conclusions 

In this work, a novel and eco-friendly electrocatalyst of reduced

graphene oxide covered strontium tungstate composite was syn-

thesized. The composite was characterized by FESEM, EDX, XRD,

Raman, and EIS. The composite was provided a large electroactive

surface area and high electrocatalytic activity. The rGOSs@SrWO 4 

composite modified electrode shown excellent electrochemical de-

tection performance of catechol. DPV sensing platform was demon-

strated which showed wide linear range (0.034–672.64 μM) and

nanomolar detection limit (7.34 nM). The method was successful in

the determination of catechol spiked in drinking water and green

tea samples, thus as great potential in food safety and water anal-

ysis. In future rGOSs@SrWO 4 composite will be studied on pho-

todegradation and photo-water splitting applications. 
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