

Remaining Time: 01 minute, 20 seconds.

Question Completion Status:

Moving to the next question prevents changes to this answer.

Question 18

The Maclaurin series for $f(x) = \cos(x^2)$ is

O A. None of the above.

OB.
$$1 - \frac{x^4}{2!} + \frac{x^8}{4!} - \dots + (-1)^n \frac{x^{4n}}{(2n)!} + \dots$$

$$0 c. 1 - \frac{x^4}{4!} + \frac{x^8}{8!} - \dots + (-1)^n \frac{x^{4n}}{(4n)!} + \dots$$

O D.
$$1 + \frac{x^4}{2!} + \frac{x^8}{4!} + \dots + \frac{x^{4n}}{(2n)!} + \dots$$

⚠ Moving to the next question prevents changes to this answer.

Remaining Time: 22 minutes, 59 second	is.
▼ Question Completion Status:	
Moving to the next question prever	nts changes to this answer.
Question 19	
Use Green's theorem to e	valuate
$\int_{C} y dx + (y - x) dy \text{ where}$	C is the triangle with vertices (0;0), (0;1), (2:1)
_ a. −2	
○ b. −1	
o c. 2	
0 d.	
Moving to the next question preven	ents changes to this answer.

Which of the following value is the surface integral of the ful

$$O A. \frac{\pi}{12} (5^{\frac{3}{2}} - 1)$$

$$\frac{\pi}{6}(5^{\frac{3}{2}}-1)$$

O C.
$$\frac{\pi}{6}(1-5^{\frac{3}{2}})$$
O D. $\frac{\pi}{6}(17^{\frac{3}{2}}-1)$

$$0.0 \cdot \frac{\pi}{6} (17^{\frac{3}{2}} - 1)$$

Moving to the next question prevents changes to this answer.

→ ▲ Moving to the next question prevents changes to this answer.

If V is the volume of the solid Q bounded by the surfaces $z = x^2 + y^2$, $z^2 = x^2 + y^2$, then V =

$$\bigcirc A. V = \frac{\pi}{12}$$

$$\bigcirc$$
 B. $V = \frac{\pi}{6}$

$$\bigcirc$$
 c. $V = \frac{\pi}{3}$

$$\bigcirc$$
 D. $V = \pi$

Moving to the next question prevents changes to this answer.

If m is the mass of the solid bounded by : x+y+z=

$$\bigcirc A. m = \frac{a^6}{6}$$

$$_{\bigcirc}$$
 B. $m = \frac{a^3}{6}$

$$\odot$$
 C. $m = \frac{a^3}{3}$

$$OD. m = \frac{a^3}{12}$$

Moving to the next question prevents changes to this answer

Which of the following value is the surface integral of the function f(x,y) = 1 over the portion of the paraboloid $z = 4 - x^2 - y^2$ with $z \ge 0$?

$$0 \text{ A.} \frac{\pi}{6}(1-5^{\frac{3}{2}})$$

$$0.8 \cdot \frac{\pi}{12} (5^{\frac{3}{2}} - 1)$$

$$\frac{\pi}{6}(5^{\frac{3}{2}}-1)$$

$$0.0.\frac{\pi}{6}(17^{\frac{3}{2}}-1)$$

 \rightarrow $\stackrel{lack}{ riangle}$ Moving to the next question prevents changes to this answer.

Moving to the next question prevents changes to this answer.

Question 5

If ${\it V}$ is the volume of the solid ${\it Q}$ bounded by the surfaces

$$x^2 + y^2 = 2$$
, $y = \sqrt{x}$, $y = 0$, $z = 0$, $z = 15x$, then $V =$

B

$$_{\odot}$$
 d. $V = 2.2$

Moving to the next question prevents changes to this answer.