King Saud University Department Of Mathematics.
 M-203 [Final Examination]
 (Differential and Integral Calculus)

(II-Semester $1+36^{1} 1+37$)
Max. Marks: 40
Marking Scheme: Q.No: $1[++3+3]$, Q.No:2 3 3+4+3], Q.No:3 $[f+3 \mid+4+6]$
Q. No: 1 (a) Find the interval of convergence and radius of convergence of the

$$
\text { power series } \sum_{n=1}(-1)^{n} \frac{(2 x-1)^{n}}{n+1} \text {. }
$$

(b) Find the Taylor series for the function $f(x)=x^{4}+x-2$ at $c=1$.
(c) Discuss the consergence of the sequence $\left\{\left(\frac{\pi}{2}-\tan ^{-1} n\right)^{1 / n}\right\}_{n=1}^{s}$.
Q. No: 2 (a) Find the area of the surface $z=x y$ lying over the plane region

$$
x^{2}+y^{2}=1
$$

(b) Find the centroid of the solid region bounded by the graphs of $z=\sqrt{16-x^{2}-y^{2}}$ and $z=0$.
(c) Use cylindrical coordinates to find the mass of the solid bounded by the graphs of $z=\sqrt{16-x^{2}-y^{2}}$ and $z=0$. The density at a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is $\delta(x, y, z)=k z$.
Q. No: 3 (a) Prove that the line integral $\int_{<} \vec{F} \bullet d \vec{r}$ is independent of path and find its value if $\vec{F}(x, y)=\left(x+y^{2}\right) \vec{i}+\left(2 x y+3 y^{2}\right) \vec{j}$ and C is plane curve from the point $(0,0)$ to the point $(1,2)$.
(b) Use Green's theorem to evaluate $\oint_{C}\left(2 y^{2}-3 y\right) d x+4 x y d y$ where C is the boundary of the plane region R that lies outside the circle $x^{2}+y^{2}=4$ and inside the circle $x^{2}+y^{2}=9$.
(c) Use divergence theorem to evaluate the flux $\iint_{S} \vec{F} \cdot \vec{n} d S$, where S is the cube bounded by the planes $x=0 . x=a, y=0 . y=a, z=0$, and $z=a$ and $\vec{F}(x, y, z)=2 x \vec{i}-2 y \vec{j}+z^{2} \vec{k}$.
(d) Verify Stokes's theorem for $\vec{F}(x, y, z)=y^{2} \vec{i}+x \overrightarrow{j+z} z^{2} \vec{k}$ and S is the part of the plane $y+z=2$ that lies inside the cylinder $x^{2}+y^{2}=1$.

