King Saud University Department Of Mathematics M-203 [Final Examination] (Differential and Integral Calculus)

	(Summer Semester 1435 1436)
Max. Ma	
	Marking Scheme: Q.No:1[3+5+4], Q.No:2[4+4+4], Q.No:3[3+3+4+6]
Q. No: 1	(a) Determine whether the series $\sum_{n=1}^{\infty} \frac{\sin^{-1}(\frac{1}{n})}{n^2}$ converges or diverges.
	(b) Find the interval of convergence and radius of convergence of the
	power series $\sum_{n=0}^{\infty} \frac{n^2}{2^n} (x+1)^n$.
	(c) Find Maclaurin series of $f'(x) = \cos x$ and use it to find the Maclaurin series of $\sin^2 x$.
Q. No: 2	2 (a) Evaluate the integral $\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} dx dy$.
	(b) Find the surface area of the part of the plane $3x + 2y + z = 6$ that lies in
	the first octant. (c) Sketch the graph of the solid region Q that lies inside the sphere $x^2 + y^2 + z^2 = 1$ and outside the cone $z^2 = x^2 + y^2$ and find its volume using spherical coordinates.
Q. No: 3	3 (a) Show that the line integral $\int_{(1,0,2)}^{(-2,1,3)} (6xy^3 + 2z^2) dx + 9x^2y^2 dy + (4xz+1) dz$ is independent of path, and find its value.
	(b) Use the Green's theorem to evaluate
	$\oint_{C} (\sqrt{x^{2} + 1} - x^{2}y) dx + (xy^{2} - y^{\frac{5}{3}}) dy \text{ where C is the circle } x^{2} + y^{2} = 4.$
	(c) Use the Divergence theorem to find $\iint_{S} \vec{F} \cdot \vec{n} dS$, where
	$\vec{F}(x, y, z) = x^3 \vec{i} + y^3 \vec{j} + 0 \vec{k}$ and S is the surface of the region bounded by $z = 3 - x^2 - y^2$ and the plane $z = 1$.
	(d) Verify the Stoke's theorem for the vector field \vec{F} and the surface S, where $\vec{F}(x, y, z) = 2z\vec{i} + 3x\vec{j} + 5y\vec{k}$ and S is the portion of the paraboloid $z = 4 - x^2 - y^2$, $z \ge 0$ with upward orientation and C is the trace of S in the xy-plane.