King Saud U'niversity Department Of Mathematics M-203 [Final Examination] (Differential and Integral Calculus)

(Summer Semester $1+351+36$)
Max Marks: 40 Time: 3 hrs.
Marking Scheme: Q.No: $1[3+5+4]$, Q.No: $2[4+4+4]$, Q.No: $3[3+3+4+6]$
Q. No: 1 (a) Determine whether the series $\sum_{n=1}^{x} \frac{\sin ^{-1}(1 / n)}{n^{2}}$ converges or diverges
(b) Find the interval of convergence and radius of convergence of the purter series $\sum_{n=1}^{n} \frac{n^{2}}{2^{\prime \prime}}(x+1)^{\prime \prime}$.
(c) Find Maclaurin series of $f(x)=\cos x$ and use it to find the Maclaurin series of $\sin ^{2} x$.
Q. No: 2 (a) Evaluate the integral $\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} d x d y$.
(b) Find the surface area of the part of the plane $3 x+2 y+z=6$ that lies in the first octant.
(c) Sketch the graph of the solid region Q that lies inside the sphere $x^{2}+y^{2}+z^{2}=1$ and outside the cone $z^{2}=x^{2}+y^{2}$ and find its volume using spherical coordinates.
Q. No: 3 (a) Show that the line integral $\int_{(1,0,2)}^{(-2,1.3)}\left(6 x y^{3}+2 z^{2}\right) d x+9 x^{2} y^{2} d y+(4 x z+1) d z$ is independent of path, and find its value.
(b) Use the Green's theorem to evaluate
$\oint_{1}\left(\sqrt{x^{2}+1}-x^{2} y\right) d x+\left(x y^{2}-y^{\frac{2}{3}}\right) d y$ where C is the circle $x^{2}+y^{2}=4$.
(c) Use the Divergence theorem to find $\iint_{S} \vec{F} \cdot \vec{n} \mathrm{dS}$, where $\vec{F}(x, y, z)=x^{3} \vec{i}+y^{3} \vec{j}+0 \vec{k}$ and S is the surface of the region bounded by $z=3-x^{2}-y^{2}$ and the plane $z=1$.
(d) Verify the Stoke's theorem for the vector field \vec{F} and the surface S, where $\vec{F}(x, y, z)=2 z \vec{i}+3 x \vec{j}+5 y \vec{k}$ and S is the portion of the paraboloid $z=4-x^{2}-y^{2}, z \geq 0$ with upward orientation and C is the trace of S in the xy-plane.

