King Saud University
 Department of Mathematics
 M-203
 (Differential and Integral Calculus)
 Second Mid-Term Examination
 (II-Semester 1436/1437)

Max. Marks: 25

Note: All questions carry equal marks

Q. No: 1 Evaluate the integral: $\quad \int_{0}^{2} \int_{y^{2}}^{4} y \cos \left(2 x^{2}+1\right) d x d y$.
Q. No: 2 Use polar co-ordinate to evaluate the double integral

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x
$$

Q. No: 3 A solid is bounded by the graphs of the equations

$$
x^{2}+y^{2}=1, \quad z=0, z=4 .
$$

Find the moment of Inertia about z-axis, if the density at any point of the solid is directly proportional to its distance from the z-axis.
Q. No: 4 Find the volume of the solid in the first octant bounded by the graphs of

$$
z=x^{2}+y^{2} \text { and } y=4-x^{2} .
$$

Q.No: 5 Use spherical coordinates to evaluate the integral

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{1} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x .
$$

