King Saud University,
College of Sciences
Mathematical Department.

Mid-Term1 /S1/2016
Full Mark:25. Time 1H30rnn
(02/02/1438

Question $1[4,4]$. a) Determine the local region in the $x y$-plane for which the following differential equation

$$
\sqrt{9-y y^{2}} \frac{d y}{d x}=\ln \left(4-x^{2}\right),
$$

would have a unique solution through the origin (0,0).
b) Find the solution of the differential equation:

$$
\left(x^{2}-x-2\right) \frac{d y}{d x}=(x-2)^{2}+3 y, \quad x>2 .
$$

Question $2[4,4]$. a) Verify that the differential equation

$$
\left(x^{2}+y^{2}-2\right) d x+\left(x^{2}-2 x y\right) d y=0, \quad x(x-2 y) \neq 0 .
$$

is not exact. Find a suitable integrating factor to convert it to an exact equation, and then solve it.
b) Solve the initial value problem

$$
\left\{\begin{array}{c}
5 x y^{2} y^{\prime}+y^{3}=32(1+\ln x) y^{-2}, \quad x>0, y \neq 0 \\
y(1)=1
\end{array}\right.
$$

Question 3[4]. Solve the differential equation

$$
\frac{d y}{d x}=\frac{1-x-y}{x+y} . \quad x+y \neq 0 .
$$

Question 4[5]. Initially 100 mg of a radioactive substence was present. After 8 hours the mass has decreased by 4%. If the rate of decay is proportional to the amount of the substence present at time t. Find the amount of the remaining after 50 hours.

