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Question 1[{4,4]. a) Determine the local region in the ry—plane for
which the following differential equation
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would have a unique solution through the origin (0.0).
b) Find the solution of the differential equation:
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Question 2[4,4]. a) Verify that the differential equation
(x° + y° = 2)dr + (2 = 2z2y)dy = 0, xz(x —2y) # 0.

is not exact. Find a suitable integrating factor to convert it to an exact
equation, and then solve it.

b) Solve the initial value problem
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Question 3[4]. Solve the differential equation
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Question 4[5]. Initially 100 mg of a radioactive substence was present.
After 8 hours the mass has decreased by 1%. If the rate of decay is propor-

tional to the amount of the substence present at time t. Find the amount of
the remaining after 50 hours.



