King Saud University, College of Sciences
Mathematical Department.

Mid-Term Exam /S2/2022
Full Mark:30. Time 2H
23/03/2022

Question 1. $[5,4]$ a) A radioactive substance has a half-life of 4000 years. If 200 grams were initially present, how much of the substance will be left after 10000 years.
b) Find the general solution of the differential equation

$$
d y+\frac{y(x+y)}{x^{2}} d x=0, \quad x>0 .
$$

-Question 2. [5] Find and sketch the largest region of the $x y$-plane for which the initial value problem

$$
\left\{\begin{array}{c}
\cos ^{-1}(1+y) d x+(\ln (x+1)-1) d y=0 \\
y(0)=-1
\end{array}\right.
$$

has a unique solution.
(Hint: $\left.\frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}}\right)$
Question 3. [4, 4]. a) Solve the differential equation

$$
y \frac{d y}{d x} e^{y-x}-\ln \left(1+e^{x}\right)=0 .
$$

b) By using an appropriate integrating factor, find the general solution of the differential equation

$$
\cos x d x+\left(2+\frac{3}{y}\right) \sin x d y=0, \quad 0<x<\pi, y>0 .
$$

Question 4. $[4,4]$. a) Solve the initial value problem

$$
\left\{\begin{array}{c}
y(y-1) \sin x d x-d y=0 \\
y\left(\frac{\pi}{2}\right)=1
\end{array}\right.
$$

b) Determine whether the following functions

$$
f_{1}(x)=\ln (x+2), f_{2}(x)=\ln (2-x), f_{3}(x)=\ln \left(4-x^{2}\right),
$$

are linearly dependent or linearly independent on the interval $(-2,2)$.

Q1 a) :

$$
\begin{align*}
& Q(f)=200 e^{k t} \\
& Q(4000)=100=200 e^{4000 k} \\
& \Rightarrow K=\frac{l_{1}\left(\frac{1}{2}\right)}{4000}=\frac{-\ln ^{2}}{4000} \tag{2}\\
& Q(10000)=200 e^{-\frac{e_{0} 2}{400} \cdot 1000}=200 e^{-\frac{e_{2}{ }^{2}}{2}} \simeq 35.355 \mathrm{gz} . \tag{2}
\end{align*}
$$

Q b)

$$
\frac{d y}{d x}=-\left(\frac{y}{x}\right)-\left(\frac{y}{x}\right)^{2} \quad(H e)
$$

(PI)
Cet $u=\frac{y}{x} \Rightarrow y=x u \Rightarrow y^{\prime}=u+x u$, then

$$
\begin{aligned}
& u+x \frac{d u}{d x}=-u-u^{2} \Rightarrow \frac{d u}{u^{2}+2 u}=-\frac{d x}{x} \\
\Rightarrow & \int \frac{d u}{u(u+2)}=-\ln x+c_{1} \quad(1>0)
\end{aligned}
$$

By de compositen we have $\frac{1}{2} \int \frac{d u}{4}-\frac{1}{2} \int \frac{d u}{4+2}=-\operatorname{lu} x+c$

$$
\begin{align*}
& \frac{1}{2} \ln |u|-\frac{1}{2} \ln |u+2|+\ln x=c_{1} \\
\Rightarrow & \ln \left|\frac{x^{2} u}{u+2}\right|=c_{1} \Rightarrow \frac{x^{2} u}{u+2}=C_{2} \tag{1}\\
\Rightarrow & \frac{x^{2}\left(\frac{y}{x}\right)}{\frac{y}{x}+2}=c_{2} \Rightarrow \frac{x^{2} y}{y+2 x}=C_{2} .
\end{align*}
$$

(1)

Q2: $\quad y^{\prime}=f(x, y)=\frac{\cos ^{-1}(y+1)}{1-\ln (1+x)}$ is con tincores on

$$
\begin{aligned}
R_{1} & =\left\{(x, y) \in \mathbb{R}^{2} ;-1 \leq y+1 \leq 1, \quad 1+x>0, \quad x \neq e-1\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2} \quad-2 \leqslant y \leq 0, x \in(-1, e-1) \cup(e-1, \infty)\right\} \\
\frac{\partial f}{\partial y} & =\frac{1}{1+\ln (1+x)} \cdot \frac{1}{\sqrt{1-(y+1)^{2}}} \text { is cont on } \\
R_{2} & =\left\{(x, y) \in \mathbb{R}^{2}:-2<y<0, x \in(-1, e-1) \cup(e-1, \infty)\right\}
\end{aligned}
$$

$f_{1} \frac{\partial f}{\partial y}$ are cont on $R_{1} \cap R_{2}=R_{2}$
or $(0,-1) \in R_{e}=\left\{(x, y) \in \mathbb{R}^{2} \quad-1<x<e-1,-2<1<0\right\}$
which is the largst reyion for which the Iviep admits a uncque bolution.

Q Q $_{3} y \frac{d y}{d x} e^{y} \cdot e^{-x}=\ln \left(1+e^{x}\right) \quad(\operatorname{Sep}$ eq)

$$
\begin{align*}
y e^{y} d y & =e^{x} \ln \left(1+e^{x}\right) d x \tag{2}\\
\Rightarrow \quad \int y e^{y} d y & =\int e^{x} \ln \left(1+e^{x}\right) d x \\
\Rightarrow y e^{y}-e^{y} & =\int \ln t d t \\
& =t \ln t-t+C \\
& =\left(1+e^{x}\right) \ln \left(1+e^{x}\right)-\left(1+e^{x}\right)+C
\end{align*}
$$

O_ b) : $\underbrace{\cos x}_{M} d x+\underbrace{\left(\frac{2+3}{y}\right) \sin x d y}_{N}=0 \rightarrow(*)$

$$
\frac{\frac{\partial m}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{-\left(2+\frac{3}{y}\right) \cos x}{\left(2+\frac{3}{y}\right) \sin x}=-\cot x
$$

Thus

$$
\begin{equation*}
\mu(x)=e^{-\int \cot x d x}=\frac{1}{\sin x} \tag{1}
\end{equation*}
$$

Mulleply (7) by $\mu(x)=\frac{1}{\sin x}$

$$
\begin{gathered}
\frac{\cos x}{\sin x} d x+\left(2+\frac{3}{y}\right) d y=0 \rightarrow(* *) \\
\frac{\partial m}{\partial y}=0, \frac{\partial N}{\partial x}=0
\end{gathered}
$$

Eo, $(x v)$ is axaot $\Rightarrow \exists f(x, y)$ sueh that

$$
\begin{aligned}
& \left\{\begin{aligned}
\frac{\partial r}{\partial x} & =\frac{\cos x}{\operatorname{six}} \longrightarrow(1) \\
\frac{\partial f}{y} & =\frac{3}{y}+2 \rightarrow(2)
\end{aligned}\right. \\
& \text { From (2), } F(x, y)=3 \ln y+2 y+B(x)-
\end{aligned}
$$

$$
\frac{\partial F}{\delta x}=B^{\prime}(x) \rightarrow(4)
$$

From (1) at (4), we have $B^{\prime}(x)=\frac{\cos x}{\delta n x}$

$$
\begin{gather*}
\Rightarrow \quad B(x)=\int \frac{\cos x}{\sin x} d x=\ln |\sin x|+c_{1} \tag{2}\\
=\ln (\sin x)+c_{1}
\end{gather*}
$$

Henca $3 \ln y+2 y+\ln (\ln x)=C$

Q4 a) $\left\{\begin{array}{c}y(y-1) \sin x d x-d y=0 \\ y(a)=1\end{array}\right.$
The $D E$ can be treated as separable eeo ar Bernoulliequitan

$$
\int \sin x d x=\int \frac{d y}{y(y-1)}
$$

$$
\frac{1}{y(y-1)}=\frac{A}{y}+\frac{B}{y-1}=\frac{y(A+B)-A}{y(y-1)} \Rightarrow A=-1, B=1
$$

Hence $-\cos x=-\ln |y|+\ln |y-1|+c_{1}$

$$
\begin{aligned}
& \text { Hence } \quad\left(c_{2}=-c_{1}\right) \\
& \Rightarrow \ln \left|\frac{y-1}{y}\right|=-\cos x+c_{2} \\
& \left.\Rightarrow \frac{y-1}{y} \right\rvert\,=e^{-\cos x} \cdot e^{2} \\
& \Rightarrow \frac{1}{y}=c_{3}= \pm c_{3} e^{-\cos x} \\
& \Rightarrow\left(2 e^{-\cos x}-1\right. \\
& y\left(\frac{\pi}{2}\right)=1 \Rightarrow-1=c_{3}-1 \Rightarrow c_{3}=0 \\
& \text { Hance } y=1 \text { (Singetorsolution) }
\end{aligned}
$$

Another solution:

$$
\begin{aligned}
& \left(y^{2} \sin x-y \sin x\right) d x=d y \\
& \frac{d y}{d x}=y^{2} \sin x-y \sin x \\
& y^{\prime}+y \sin x=y^{2} \sin x \\
& y^{-2} y^{\prime}+y^{-1} \sin x=\sin x
\end{aligned}
$$

Cot $u=y^{-1} \Rightarrow u^{\prime}=-y^{-2} y$

$$
\begin{aligned}
& \text { Han }-u^{\prime}+21 \sin x=\sin x \\
& \Rightarrow \quad u^{\prime}-u \sin x=-\sin x \\
& \mu(x)=e^{-\int \sin x d x}=e^{\cos x} \text {, then } \\
& \frac{d}{d x}\left(e^{\csc x}\right)=-\sin x e^{\cos x} \\
& \Rightarrow e^{\cos x} u=-\int \sin x e^{\cos x} d x=e^{\cos x}+C \\
& \frac{1}{y}=u=1+C e^{-\varepsilon x} \\
& \Rightarrow y=\frac{1}{1+c e^{-9 x}} \\
& y\left(\frac{x}{2}\right)=1=\frac{1}{1+c} \Rightarrow C=0
\end{aligned}
$$

Then $y=1$
6) $f_{3}(x)=\ln \left(4-x^{2}\right)=\ln (2-x)(2+x)=\ln (2-x)+\ln (2+x)$

- that is $\quad f_{3}(x)-f_{2}(x)-f_{1}(x)=0$

Hence f_{1}, f_{2}, f_{3} arc cireerily depordeof
4

