Differential and Integral Calculus (MATH-205)

Final Exam/Spring 2022
Date: Tuesday, June 7, 2022

Time Allowed: 180 Minutes
Maximum Marks: 40

Note: Attempt all 9 questions and give DETAILED solutions. Make sure your solutions are clearly written and contain all necessary details.

Question 1: $\left(4^{\circ}\right)$ Determine whether the following infinite series converges or diverges.

$$
\sum_{n=2}^{\infty} \frac{1}{n \sqrt[3]{\ln n}}
$$

Question 2: $\left(6^{\circ}\right)$ Given $f(x)=\frac{x}{\left(x^{2}+1\right)^{2}}$. Find power series representation of $f(x)$. Hence, find the radius and interval of convergence of this power series.

Question 3: $\left(3^{\circ}\right)$ Let $\mathbf{a}=<4,2,-1>$ and $\mathbf{b}=<1,2,-3>$. Show that $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}. Hence, find the area of the parallelogram whose adjacent sides are \mathbf{a} and \mathbf{b}.

Question 4: $\left(3^{\circ}\right)$ Find the distance from $A(2,-6,1)$ to the line passing through $B(3,4,-2)$ and $C(7,-1,5)$.

Question 5: (4 ${ }^{\circ}$ Consider the space curve C defined by

$$
C: x=4 \sqrt{1-t}, y=t^{2}-1, z=\frac{4}{t}, t<1
$$

Find parametric equations for the tangent line to C at the point $t=-1$.
Question 6: (5°) Let $z=f(x, y)$ be defined implicitly as a function of x and y by the equation

$$
x e^{y}+y e^{z}=2+3 \ln 2-2 \ln x
$$

Find the directional derivative of f at $(1, \ln 2)$ in the direction of maximum increase in f.

Question 7: $\left(5^{\circ}\right)$ Find the extrema and saddle points of $f(x, y)=x^{2}-$ $3 x y-y^{2}+2 y-6 x$ on $R=\{(x, y):|x| \leq 3,|y| \leq 2\}$. Sketch R.

Question 8: $\left(5^{\circ}\right)$ Evaluate the double integral $\int_{0}^{2} \int_{x}^{2} y^{4} \cos \left(x y^{2}\right) d y d x$. Sketch and describe the region R in this integral.

Question 9: $\left(5^{\circ}\right)$ Sketch the region R and evaluate the following double integral

$$
\iint_{R}(x+y) d A
$$

where R is the region bounded by $x^{2}+y^{2}=2 y$.
Q. 1 Here $a_{n}=\frac{1}{n \sqrt[3]{\ln n}}=\mathcal{f}(n), n \geqslant 2$

$$
\begin{aligned}
& \int_{2}^{\infty} \frac{d x}{x \sqrt[3]{\ln x}}=\lim _{T \rightarrow \infty} \int_{2}^{T} \frac{d x}{x \cdot \sqrt[3]{\ln x}}-(I) \\
& \int_{x \cdot \sqrt[3]{\ln x}} \frac{d x}{2 /(\ln x)^{-1 / 3} \cdot \frac{d x}{x}=\frac{(\ln x)^{2 / 3}}{2 / 3}} \\
& \therefore(I) \Rightarrow \int_{2}^{\infty} \frac{d x}{x \sqrt[3]{\ln x}}=\lim _{T \rightarrow \infty}\left|\frac{3}{2} \cdot(\ln x)^{2 / 3}\right|_{2}^{T}=\frac{3}{2}\left[\infty-(\ln 2)^{2 / 3}\right]=\infty
\end{aligned}
$$

$=\int_{2}^{\infty} \frac{d x}{x \sqrt[3]{\ln x}}$ diverges. Hence by integral test, $\sum_{n=2}^{\infty} \frac{1}{n \sqrt[3]{\ln n}}$ als Livergen. (1)
Q. $2(6)$

Given function: $\left.f(x)=\frac{x}{\left(1+x^{2}\right)^{2}}-c_{1}\right)$

$$
\begin{equation*}
=\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots+\frac{x^{n}}{1}+\cdots, \quad \mid \times 1<1 \tag{1/2}
\end{equation*}
$$

Replacing x by $-x^{2}$,

$$
\begin{align*}
& \text { eplacing } x b_{2}-x^{2} \text {, } \\
& \frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\cdots+(-1)^{n} \cdot x^{2 n}+\cdots,\left|x^{2}\right|<1
\end{align*}
$$

sift. both sides, w.r-t. x^{\prime},

$$
\begin{align*}
& \text { sift. both sides, w.r-1. } x \text {, } \\
& \frac{-2 x}{\left(1+x^{2}\right)^{2}}=-2 x+4 x^{3}-6 x^{5}+\cdots+2 n(-1)^{n} \cdot x^{2 n-1}+\cdots \\
& \Rightarrow \frac{x}{\left(1+x^{2}\right)^{2}}=x-2 x^{3}+3 x^{5}-\cdots+n(-1)^{n+1} \cdot x^{2 n-1}+\cdots \tag{2}\\
&=\sum_{n=1}^{\infty}(-1)^{n+1} \cdot n \cdot x^{2 n-1}-(2)(2
\end{align*}
$$

This is the required power series representation of (I). For Radius \& interval of Convergence:

$$
\begin{align*}
& u_{n}=(-1)^{n+1} \cdot n \cdot x^{2 n-1} \\
&= \text { Ratio: }\left|\frac{u_{n+1}}{u_{n}}\right|=\left|\frac{(n+1) \cdot x^{2 n+1}}{n \cdot x^{2 n-1}}\right|=\left(\left.1+\frac{1}{n}|\cdot| x^{2} \right\rvert\,\right. \tag{1}\\
& \text { 1. } \quad\left|u_{n+1}\right| \quad\left|x^{2}\right| \text { bi ratio test for abso }
\end{align*}
$$

$\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\left|x^{2}\right|$, bi ratio test for abso lute Convergence, (2) converges if $\left|x^{2}\right|<1$, ie., $-1<x<1 . \Rightarrow R C=1$
$\frac{\text { At } x=1}{\sum_{n=1}^{\infty}(-1)^{n+1} \cdot n \cdot x^{2 n-1}}=\sum_{n=1}^{\infty}(-1)^{n+1} \cdot n$, which is divergent AS.
At $x=-1$
$\sum_{n=1}^{\infty}(-1)^{n+1} \cdot n \cdot x^{2 n-1}=\sum_{n=1}^{\infty}(-1)^{3 n} \cdot n$, which is also a divergent A.S. $\because \quad \therefore I \dot{C}=(-1,1) \quad 2$
Q. 3 (3) $\vec{a}=[4,2,-1], \vec{b}=[1,2,-3]$

$$
\begin{align*}
& \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
4 & 2 & -1 \\
1 & 2 & -3
\end{array}\right|=-4 \hat{i}+\| \hat{j}+6 \vec{k} \tag{1}\\
& \vec{a}-(\vec{a} \times \vec{b})=-16+22-6=0 \quad \therefore \vec{a} \perp \vec{a} \times \vec{b} \tag{1}\\
& \vec{b} \cdot(\vec{a} \times \vec{b})=-4+22-18=0 \quad \therefore \vec{b} \perp \vec{a} \times \vec{b} \\
& \text { Area q } \| \text { gram }=\|\vec{a} \times \vec{b}\|=\sqrt{173} \text { sq. unit. (1) } \tag{1}
\end{align*}
$$

Q. 4 A $(2,-6,1), B(3,4,-2), C(7,-1,5)$
(3) D'vector f line through $B \& \vec{C}=\langle 4,-5,7\rangle=\overrightarrow{B C}$

Also $\overrightarrow{B A}=\langle-1,-10,3\rangle$, and $\overrightarrow{B C} \times \vec{B} A=55 \hat{i}-19 \hat{j}=45 \hat{k}$

$$
\begin{equation*}
=d=\frac{\|\overrightarrow{B C} \times \overrightarrow{B A}\|}{\|\overrightarrow{B C}\|}=\frac{\sqrt{54 \|}}{\sqrt{90}}=\sqrt{\frac{5401}{90}} \text { units. } \tag{2}
\end{equation*}
$$

2.5 $C: \quad x=4 \sqrt{1-t}, y=t^{2}-1, \quad z=\frac{4}{t}, t<1$

It is determined $b^{\prime} y$ the v^{\prime} function

$$
\begin{aligned}
& t \text { is determined by the vifunction } \\
& \vec{r}(t)=4 \sqrt{1-t} \hat{i}+\left(t^{2}-1\right) \hat{j}+\frac{4}{t} \hat{k}, t<1
\end{aligned}
$$

At $t=-1, \quad \vec{\gamma}(-1)=4 \sqrt{2}{ }_{i}+0 . \hat{j}-4 \hat{k}$, It is pt. y tangency $(4 \sqrt{2}, 0,-4)$. D'vector q tangent (1) line to C at pt. ' t ',

$$
\dot{\vec{r}}(t)=\frac{-2}{\sqrt{1-t}} \hat{i}+2 t \hat{j}-\frac{4}{t^{2}} \cdot \hat{k}
$$

At $t=-1 ; \quad \dot{\vec{r}}(-1)=-\sqrt{2} \hat{i}-2 \hat{j}-4 \hat{k}$, it is D'vector 9 tangent line to c at $p t, t=-1$. Therefore, parametric ques of tangent line are

$$
\begin{equation*}
l=x=4 \sqrt{2}-\sqrt{2}, y=-2 s, z=-4-4 s, s \in \mathbb{R} \text {. } \tag{1}
\end{equation*}
$$

Q. 6

$$
\begin{align*}
& 6 \quad x \cdot e^{y}+y \cdot e^{z}=2+3 \cdot \ln 2-2 \ln x-(1) \tag{1}\\
& \Rightarrow \quad F(x, y, z)=x e^{y}+y \cdot e^{z}+2 \ln x-2-3 \ln 2=0
\end{align*}
$$

dexines $z=z(x, y)$ implicite $\{$.

$$
\begin{align*}
& \text { grad } \hat{t}=\nabla t=t_{x} \hat{i}+t_{y} \hat{j} \\
& t_{x}=-\frac{F_{x}}{F_{z}}=-\frac{\left(e^{y}+\frac{2}{x}\right)}{y_{e^{z}}} \quad y \quad t_{y}=-\frac{F_{y}}{F_{z}}=-\frac{\left(x e^{y}+e^{z}\right)}{y \cdot e^{z}} \\
& \therefore \text { grat } f=\nabla z=-\frac{\left(e^{y}+\frac{\alpha}{x}\right)}{y \cdot e^{z}} \cdot \hat{i}-\frac{\left(x e^{y}+e^{z}\right)}{y-e^{z}} \hat{j} \tag{2}
\end{align*}
$$

At $9(1, \ln 2)$,

$$
\begin{aligned}
& T(1, \ln 2), \\
& \left.\operatorname{qrad}\right|_{(1, \ln 2)}=-\frac{4}{3 \cdot \ln 2} \hat{i}-\frac{5}{3 \ln 2} \hat{j}^{(1)} \quad \begin{array}{l}
\text { (1) } \Rightarrow=1, y=\ln \\
z=\ln 3
\end{array}
\end{aligned}
$$

A unit vector in the direction f aras $\left.z\right|_{(n, 1 n 2)}$ is

$$
\begin{aligned}
& \hat{u}=[4 \hat{i}+5 \hat{j}] \times-\frac{1}{\sqrt{41}} \quad \because \eta \text { increases rapitll } \\
& \text { intur aircchang } \nabla t .
\end{aligned}
$$

$Q .7$
(5)

For critical ph. $z_{x}=0, z_{y}=0$
ic. $\left.\quad \begin{array}{l}2 x-3 y=6 \\ 3 x+2 y=2\end{array}\right\} \Rightarrow(x, y)=\left(\frac{18}{13}, \frac{-14}{13}\right)$ is the ont critical pl. inside R.

$$
\begin{aligned}
& f_{x x}=2,7_{y y}=-2, f_{x y}=-3 \\
& \therefore D(x, y)=\left|\begin{array}{cc}
2 & -3 \\
-3 & -2
\end{array}\right|=-4-9=-13<0
\end{aligned}
$$

$\therefore z(x, y)$ has a saddle point at $\left(\frac{18}{13},-\frac{14}{13}\right)$.(1)
For B'dary Extrema ${ }^{2}$:
Along $x=3$;

$$
\begin{aligned}
7(3, y) & =9-9 y-y^{2}+2 y-18 \\
& =-y^{2}-7 y=g_{1}(y) \\
g_{1}^{\prime}(y)=0 & \Rightarrow-2 y-7=0 \Rightarrow y=-7 / 2 \notin R
\end{aligned}
$$

$\therefore z(x, y)$ has no extrema on $x=3$ in R (1/2)

$$
\begin{align*}
& \text { Along } x=-3 ; \\
& f(-3, y)=9+9 y-y^{2+24}+18=-y^{2}+14 y+27=g_{2}(y) \tag{1}\\
& g_{2}^{\prime}(y)=-2 y+11=0 \Rightarrow y=+11 / 2 \notin R \\
& \text { (1/2) }
\end{align*}
$$

min value
$\therefore f(x, y)$ has no extrema on $x=-3$ in $R .(1 / 2)$

$$
=f(0,-2)
$$

$$
=-8
$$

Along $y=2$;

$$
\begin{aligned}
& \text { Along } y=2 ; \\
& f(x, 2)=x^{2}-6 x-4+4-6 x=x^{2}-12 x=h_{1}(x) \\
&
\end{aligned}
$$

$$
\begin{aligned}
& f(x, 2)=x^{2}-6 x-4+4-6 x=x^{2}-12 x=h_{1}(x) \\
& h_{1}^{\prime}(x)=0 \Rightarrow 2 x-12=0 \Rightarrow x=6 \notin R \therefore \text { no extrema along } y=2 . \\
& h_{2}^{\prime}(x)=0 \Rightarrow x=0 \in \mathbb{R}
\end{aligned}
$$

$$
h_{2}^{\prime}(x)=0 \Rightarrow x=0 \in \mathbb{R}
$$

$$
f(x,-2)=x^{2}+6 x-4-4-6 x=x^{2}-8=h_{2}(x)
$$ a min. at $(0,-2)$. \uparrow

$$
\begin{aligned}
& f(x, y)=x^{2}-3 x y-y^{2}+2 y-6 x \\
& R=\{(x, y):|x| \leq 3, \mid y+\leq 2\} \\
& f_{x}=2 x-3 y-6,7_{y}=-3 x-2 y+2
\end{aligned}
$$

$\frac{\text { Q.8. }}{(5)} \int_{0}^{2} \int_{x}^{2} y^{4} \cdot \cos \left(x y^{2}\right) \cdot d y \cdot d x$
R is a region bod blu the lines $y=x, y=2$, $x=0$.
Reversing the order of integration,

$$
\begin{align*}
& \iint_{0}^{2} y^{4} \cdot \cos \left(x y^{2}\right) \cdot d y d x \\
& =\int_{0}^{2} \int_{0}^{y} y^{4} \cdot \cos \left(x y^{2}\right) \cdot d x d y=\int_{0}^{2} y^{4} \cdot\left|\frac{\sin x y^{2}}{y^{2}}\right|_{0}^{y} \cdot d y \\
& =\int_{0}^{2} y^{2} \sin y^{3} \cdot d y=\left|-\frac{\cos y^{3}}{3}\right|_{0}^{2}=-\frac{\cos 8+1}{3} \text { Ans. } \tag{3}
\end{align*}
$$

Q.9 $\iint_{R}(x+y) \cdot d A=$?

$$
\begin{aligned}
& \text { (5) } \int_{R}(x+y) \cdot d A=\text { ? } \\
& R: x^{2}+y^{2}=2 y \Rightarrow x^{2}+(y-1)^{2}=1 \\
& R: \text { unit circle wi th center }
\end{aligned}
$$

ie, R is a unit circle with center at $(0,1)$. In polar form

$$
\begin{align*}
& f(x, y)=x+y \\
& \Rightarrow f(x, \theta)=r(\cos \theta+\sin \theta) \tag{1}\\
& R_{\theta}: \quad x^{2}+y^{2}=2 y \Rightarrow r=2 \sin \theta \\
& \pi / 22
\end{align*}
$$

Q. $9(C \operatorname{lnd})$
$\pi / 22$

$$
\begin{aligned}
& \text { Q. } 9(\operatorname{ctnd}) \\
& \therefore \iint_{R}\left(x+y \mid \cdot d A=2 \int_{0}^{\pi / 2} \int_{0}^{2 \sin \theta} r(\cos \theta+\sin \theta) \cdot r \cdot d r \cdot d \theta\right. \\
& =2 \cdot \int_{0}^{\pi / 2}(\cos \theta+\sin \theta) \cdot\left|\frac{r^{3}}{3}\right|_{0}^{2 \sin \theta} \cdot d \theta=\frac{2}{3} \int_{0}^{\pi / 2} 8\left(\sin ^{3} \theta \cdot \cos \theta+\sin ^{4} \theta\right) \cdot d \theta \\
& =\frac{16}{3}\left\{\int_{0}^{\pi / 2} \sin ^{4} 0 \cdot d \theta+\left|\frac{\sin ^{4} \theta}{4}\right|_{0}^{\pi / 2}\right\}=\frac{16}{3} \int_{0}^{\pi / 2}\left(\frac{1-\cos 2 \theta}{2}\right)^{2} \cdot d \theta \\
& =\frac{4}{3} \int_{\theta}^{\pi / 2}\left(1+\cos ^{2} 2 \theta-2 \cos 2 \theta\right) \cdot d \theta=\frac{4}{3} \int_{0}^{\pi / 2}\left(1+\frac{1+\cos 4 \theta}{2}-2 \cos 2 \theta\right) d \theta \\
& =\frac{2}{3} \int_{0}^{\pi / 2}\left(3+\cos 4 \theta-4 \cos 2 \theta\left|\cdot d \theta=\frac{2}{3}\right| 3 \theta+\frac{\sin 4 \theta}{4}-\left.2 \sin 2 \theta\right|_{0} ^{\pi / 2}\right.
\end{aligned}
$$

$$
=\frac{2}{3} \times \frac{3 \pi}{2}=\pi \text {. Ans }
$$

