Differential and Integral Calculus (MATH-205)

MT Exam/Spring 2022
Date: Monday, April 4, 2022

Time Allowed: 120 Minutes
Maximum Marks: 30

Note: Attempt all SIX questions and give detailed solutions. Read statements of the questions carefully and make sure you have answered each question completely.

Question 1: $\left(4^{\circ}\right)$ Write down the first five terms of the following sequence

$$
\left\{(-1)^{n} \frac{\sqrt{n} \sin \sqrt{n}}{n+1}\right\}_{n=1}^{\infty}
$$

Find the limiting value of the sequence as $n \rightarrow \infty$. Is this sequence divergent?
Question 2: $\left(6^{\circ}\right)$ Find the interval of convergence of the series

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}
$$

Identify the function this power series represents.
Question 3: $\left(5^{\circ}\right)$ Approximate $\int_{0}^{\frac{1}{2}} x \cos x^{3} d x$ using first three non-zero terms of the Maclaurin series. Use 5 decimal point accuracy in your working.

Question 4: $\left(5^{\circ}\right)$ Given $\mathbf{a}=<2,0,-1>, \mathbf{b}=<-3,1,0>$, and $\mathbf{c}=<$ $1,-2,4>$. Find the angle (in degree) between $\mathbf{a} \times \mathbf{b}$ and \mathbf{c} and the component of $\mathbf{a} \times \mathbf{b}$ along \mathbf{c}.

Question 5: $\left(6^{\circ}\right)$ Show that the following two planes are not parallel.

$$
p_{1}: x-5 y+3 z=11 \quad \text { and } \quad \mathrm{p}_{2}:-3 \mathrm{x}+2 \mathrm{y}-2 \mathrm{z}=-7 .
$$

Find parametric equations of the line of intersection of these planes.
Question 6: $\left(4^{\circ}\right)$ Find $\mathbf{r}(t)$ subject to the given conditions

$$
\begin{gathered}
\ddot{\mathbf{r}}(t)=\frac{t}{\left(1+t^{2}\right)^{2}} \hat{\mathbf{i}}+\frac{1}{(1+t)^{2}} \hat{\mathbf{j}}+2^{3 t} \hat{\mathbf{k}}, \mathbf{r}(0)=6 \hat{\mathbf{i}}+\hat{\mathbf{j}}, \dot{\mathbf{r}}(0)=\frac{1}{2} \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\frac{2}{3 \ln 2} \hat{\mathbf{k}} \\
- \text { Good Luck - }
\end{gathered}
$$

Solution MT-SP2Z
MATH - 205
Q. 1 Given Sequence $\left\{(-1)^{n} \cdot \frac{\sqrt{n} \cdot \sin \sqrt{n}}{n+1}\right\}_{n=1}^{\infty}$
nth term: $a_{n}=\frac{(-1)^{n} \cdot \sqrt{n} \cdot \sin \sqrt{n}}{n+1}, n \geqslant 1$
1st Term: $a_{1}=-\sin 1 ;$ ind Term: $a_{2}=\frac{\sqrt{2} \cdot \sin \sqrt{2}}{3}$
3nd Term: $a_{3}=\frac{-\sqrt{3} \cdot \sin \sqrt{3}}{4} ; 4^{\text {th }}$ Term: $a_{4}=\frac{2 \sin 2}{5}$
$5^{\text {th }}$ Term: $a_{5}=\frac{-\sqrt{5} \cdot \sin \sqrt{5}}{6}$ (1)

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n} \cdot \sqrt{n} \cdot \sin \sqrt{n} \mid}{n+1}\right|=\lim _{n \rightarrow \infty} \frac{\sqrt{n} \cdot \sin \sqrt{n}}{n+1} \\
& \quad=\lim _{n \rightarrow \infty} \frac{n}{n+1} \cdot \lim _{n \rightarrow \infty} \frac{\sin \sqrt{n}}{\sqrt{n}}-(1) \tag{1}\\
& \lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=1 \\
& \because 0 \leq \sin \sqrt{n} \leq 1 \quad \Rightarrow 0 \leq \frac{\sin \sqrt{n}}{\sqrt{n}} \leq \frac{1}{\sqrt{n}} \\
& \Rightarrow 0 \leqslant \lim _{n \rightarrow \infty} \frac{\sin \sqrt{n}}{\sqrt{n}} \leq \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0
\end{align*}
$$

$\Rightarrow B_{2}$ Sandwich theorem, $\lim _{n \rightarrow \infty} \frac{\sin \sqrt{n}}{\sqrt{n}}=0$

$$
\begin{aligned}
& \therefore(1) \Rightarrow \lim _{n \rightarrow \infty}\left|a_{n}\right|=1<0=0 \\
& \Rightarrow \lim _{n \rightarrow \infty} a_{n}=0 \quad \because \lim _{n \rightarrow \infty}\left|a_{n}\right|=0 \Rightarrow \lim _{n \rightarrow \infty} a_{n}=0
\end{aligned}
$$

\therefore The given Sequence Converges to 0 , its limiting value is 0 .
Q. 2 Given Power Series $\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot x^{n+1}}{n+1}$
$n^{\text {th }}$ term: $u_{n}=\frac{(-1)^{n} \cdot x^{n+1}}{n+1}$,
Ratio: $\frac{u_{n+1}}{u_{n}}=-\frac{n+1}{n+2} \cdot x \Rightarrow\left|\frac{u_{n+1}}{u_{n}}\right|=\frac{n+1}{n+2} \cdot|x|$

$$
\Rightarrow \quad \lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=|x|
$$

By ratio test for $A C$, the given power series is $A C$ if $|x|<1 \quad f$ it is divergent if $|x|>1$.
For $|x|=1$, i.e. for $x= \pm 1$, we check separately.
(1)

For $x=1$ (1) $\Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}$ it is alternating harmonic series.
The corresponding absolute term series is $\sum_{n=0}^{\infty}\left|\frac{(-1)^{n}}{n+1}\right|=\sum_{n=0}^{\infty} \frac{1}{n+1}$ It is a divergent harmonic Series, Now, use the AST.
$C-I, n+1<n+2, \forall n \geqslant 0$

$$
\begin{align*}
& n+1<n+2, \forall n \geqslant 0 \tag{2}\\
& \Rightarrow \quad \frac{1}{n+1} \geqslant \frac{1}{n+2}, \forall n \geqslant 0 \quad \Rightarrow \quad a_{n}>a_{n+1}, \forall n \geqslant 2
\end{align*}
$$

$\therefore C$-I is satisfied.
$C-\bar{u} \quad l_{n \rightarrow \infty} a_{n}=l_{n \rightarrow \infty} \frac{1}{n+1}=0 \Rightarrow C-\bar{I}$ is satisticd.
\therefore Series (1) converges conditionally (CC) for $x=1$.
For $x=-1$:

$$
\frac{r x=-1}{(1)} \Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{2 n+1}}{n+1}=\sum_{n=0}^{\infty} \frac{-1}{n+1}=-\sum_{n=0}^{\infty} \frac{1}{n+1}
$$

$\because \sum_{n=0}^{\infty} \frac{1}{n+1}$ diverges $\therefore-\sum_{n=0}^{\infty} \frac{1}{n+1}$ also diverges.

$$
\therefore \quad I C=(-1,1]
$$

Given power series is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot x^{n+1}}{n+1}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
$$

we know that

$$
\begin{align*}
& \text { we know that } \\
& \quad \frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots \cdot \quad|x|<1 \\
& \Rightarrow \quad \int \frac{d x}{1+x}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots, \quad \because I \cdot C=(-1,1] . \tag{2}\\
& \Rightarrow \quad \ln (1+x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot x^{n+1}}{n+1},-1<x \leq 1
\end{align*}
$$

\therefore Given power series represents $\ln (1+x)$.
Q3 $\int_{0}^{1 / 2} x \cdot \cos x^{3} \cdot d x \approx$?
we know that Maclaurin', Series of $\cos x$ is

$$
\begin{align*}
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\Rightarrow & \cos x^{3}=1-\frac{x^{6}}{2!}+\frac{x^{12}}{4!}-\frac{x^{18}}{6!}+\cdots \\
\Rightarrow & x \cdot \cos x^{3}=x-\frac{x^{7}}{2!}+\frac{x^{13}}{4!}-\frac{x^{19}}{6!}+\cdots \tag{2}
\end{align*}
$$

$\Rightarrow x \cdot \cos x^{3} \approx x-\frac{x^{7}}{2!}+\frac{x^{13}}{4!} \quad$ (Taking ant 1 st 3 non-zers

$$
\begin{align*}
& \Rightarrow \int_{0}^{4 / 2} x \cdot \cos x^{3} \cdot d x \approx \int_{0}^{1}\left(x-\frac{x^{7}}{2!}+\frac{x^{13}}{4!}\right) \cdot d x=\left[\frac{x^{2}}{2}-\frac{x^{8}}{2!8}+\frac{x^{14}}{4!14}\right]_{0}^{1} \\
& \Rightarrow \int_{0}^{1} x \cdot \cos x^{3} \cdot d x \approx \frac{1}{2}-\frac{1}{16}+\frac{1}{336}=0.5-0.06250+0.00298 \\
& \Rightarrow \int_{0}^{1} x \cdot \cos x^{3} \cdot d x \approx 0.44048
\end{align*}
$$

Q,4 $\quad \vec{a}=[2,0,-1], \vec{b}=[-3,1,0], \vec{c}=[1,-2,4]$
(5) 2

$$
\hat{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 0 & -1 \\
-3 & 1 & 0
\end{array}\right|=\hat{i}-3 \hat{j}+2 \hat{k}
$$

let θ se the angle $\eta \boldsymbol{j}$ the vectors $\vec{a} \times \vec{b}+\vec{c}$.

$$
\begin{align*}
& \therefore \cos \theta=\frac{(\vec{a} \times \vec{b}) \cdot \vec{c}}{\|\dot{a} \times \vec{b}\|\|\vec{c}\|}=\frac{[1,-3,2] \cdot[1,-2,4]}{\sqrt{14} \cdot \sqrt{21}}=\frac{15}{\sqrt{294}}=0.875 \\
& \Rightarrow \quad \theta=\cos ^{-1}(0.875)=28^{\circ} .96 \approx 29^{\circ} \text { (3) } \tag{3}
\end{align*}
$$

$$
\operatorname{Comp}_{\vec{c}} \vec{a} \times \vec{b}=\|\vec{a} \times \vec{b}\| \cdot \cos \theta=\sqrt{14} \times 0.875=3.774
$$

Q. 5 Given planes:
(6) $p_{1}: x-5 y+3 z=11, p_{2}=-3 x+2 y-2 z=-7$

Normal vector of $p_{1}: \vec{n}_{1}=[1,-5,3]$

$$
p_{2}: \vec{n}_{2}=[-3,2,-2]
$$

$\because \frac{1}{-3} \neq \frac{-5}{2} \neq \frac{3}{-2}$, ie, components of $\frac{1}{n_{1}} 4 \vec{n}_{2}$ are not
proportional. $\therefore \vec{n}_{1}+\vec{n}_{2}$ are mot $\| . \Rightarrow p_{1}| | p_{2}$.
For line q intersection of P_{1} \& P_{2} :

$$
\begin{align*}
& \text { (ii) } \Rightarrow x-5 y=11-3 z \text {-ciii) } \tag{iii}\\
& \text { (iii) } \Rightarrow 3 x-2 y=7-2 z \text {-civ) } \tag{-cc}\\
& \text { (iii) }- \text { (iv) } \Rightarrow-13 y=26-7 z \Rightarrow y=-2+\frac{7}{13} z \\
& \text { (iii) }-5 \text { (iv) } \Rightarrow-13 x=-13+4 z \Rightarrow x=1-\frac{4}{13} z
\end{align*}
$$

Let $z=t$, then we have,

$$
\begin{align*}
& \text { Let } z=t \text {, then we have, } \tag{u}\\
& l=x=1-\frac{4}{13} t, y=-2+\frac{7}{13} t, z=t, \quad t \in \mathbb{R}
\end{align*}
$$

This is the line of intersection of $p_{1} f p_{2}$.
Q. 6 Given
4) Vector differential Equation: $\dot{\vec{r}}(t)=\frac{t}{\left(1+t^{2}\right)^{2}} \hat{i}+\frac{1}{(1+t)^{2}} \hat{j}+2^{3 t} \cdot \hat{k}$

Incds: $\quad \dot{\vec{r}}(0)=\frac{1}{2} \hat{i}+2 \hat{j}-\frac{2}{3 \cdot \ln 2} \hat{k}$

$$
\text { ; } \vec{Y}(0)=6 \hat{i}+\hat{j} \text { _ (III) }
$$

Integrating (1) on both sides w.r.t. ' t '

$$
\begin{align*}
& \text { Integrating (1) on both sides wert: } t^{\prime} \\
& \quad \int \dot{\vec{r}}(t) \cdot d t=\int \frac{t}{\left(1+t^{2}\right)^{2}} \cdot d t \hat{i}+\int \frac{d t}{(1+t)^{2}} \hat{j}+\int 2^{3 t} \cdot d t \hat{k} \tag{1}\\
& \Rightarrow \dot{\vec{r}}(t)=i \int\left(1+t^{2}\right)^{-2} \cdot t \cdot d t+\hat{j}(1+t)^{-2} \cdot d t+\hat{k} \int 2^{3 t} \cdot d t \tag{iv}\\
& =-\frac{1}{2\left(1+t^{2}\right)} \dot{i}^{i}-\frac{1}{1+t} \cdot \hat{j}+\frac{2^{3 t}}{3 \ln 2} \cdot \hat{k}+\dot{c}-\text { civ) }
\end{align*}
$$

where \vec{c} is arbitral constt of integration

$$
\begin{align*}
& \text { () At } t=0 ; \dot{\dot{r}}(0)=-\frac{1}{2} \hat{i}-\hat{j}+\frac{1}{3 \cdot \ln 2} \hat{k}+\vec{c} \\
& \Rightarrow \quad \frac{1}{2} \hat{i}+2 \hat{j}-\frac{2}{3 \ln 2} \hat{k}=-\frac{\tilde{i}}{2}-\hat{j}+\frac{1}{3 \ln 2} \hat{k}+\vec{c} \\
& \Rightarrow \quad \vec{c}=\hat{i}+3 \hat{j}-\frac{1}{\ln 2} \hat{k} \tag{1}\\
& \therefore(i v) \Rightarrow \dot{\vec{r}}(t)=\left(-\frac{1}{2\left(1+t^{2}\right)}+1\right) \hat{i}+\left(-\frac{1}{1+t}+3\right) \hat{j}+\left(\frac{2^{3 t}}{3 \ln 2}-\frac{1}{h_{2}}\right) \hat{k}
\end{align*}
$$

Integrating again w.r.t. 't'

$$
\begin{aligned}
& \vec{v} 101=
\end{aligned}
$$

$\therefore \vec{r}(t)=\hat{i}\left[6+t-\frac{\tan ^{-1} t}{2}\right]+j[1+3 t-\ln (1+t)]+\hat{k}\left[-\frac{1}{9}(\ln 2)^{2}-\frac{t}{\ln 2}+\frac{2}{9(\ln 2)^{2}}\right]$

At $t=0$,

$$
\begin{aligned}
& \text { Integrating again w.r.t. } \cdot \hat{t} \\
& \int \dot{\vec{r}}(t) \cdot d t=\hat{i} \int\left[1-\frac{1}{2\left(1+t^{2}\right)}\right] d t+\dot{j}\left[\int\left(3-\frac{1}{1+t}\right) d t\right. \\
& \Rightarrow \vec{r}(t)=\dot{i}\left(t-\frac{\tan ^{-1} t}{2}\right)+\dot{j}(3 t-\ln (1+t))^{3 t}+\hat{k} \int\left(\frac{2}{3 \cdot \ln 2}-\frac{1}{\ln 2}\right) d t \\
& +\vec{k}\left(\frac{2^{t}}{9 \cdot \ln 2)^{2}}-\frac{t}{\ln \tau}\right)+\vec{d}(1)
\end{aligned}
$$

