KSU - Chemical Engineering Department
ChE 212 (Thermodynamics) - TUT \#4
Name:
ID:
SN:

1. A mass of 5 kg of saturated water vapor at 300 kPa is heated at constant pressure until the temperature reaches $200^{\circ} \mathrm{C}$. Calculate the work done during this process.
2. $0.8-\mathrm{m}^{3}$ cylinder contains nitrogen gas at 600 kPa and 300 K . Now the gas is compressed isothermally to a volume of $0.1 \mathrm{~m}^{3}$. Calculate the work done during this compression process. $\mathrm{R}=0.297 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$.
3. The specific heat at constant pressure for an ideal gas is given by $\mathrm{c}_{\mathrm{p}}=0.9+$ $\left(2.7 \times 10^{-4}\right) \mathrm{T},(\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K})$ where T is in kelvin. Calculate the change in the enthalpy for this ideal gas undergoing a process in which the temperature changes from 27 to $127^{\circ} \mathrm{C}$.
