PHYS 221: Electromagnetism-1

(4th level)

Credit Hours: 3 (3+0+0)

COURSE SYLLABUS

Instructor

Dr. Huda Alwusaydi Email: <u>halwusaydi@KSU.EDU.SA</u> Office hours: Sun-Tues-Thurs/ 9:15am-10:20am.

Text book

Physics for Scientists and Engineers (7th edition)- R. A. Serway& Jewett

	Chapter & Sections	Sections Contents	Examples
1	3 <u>Vector</u> 1,2,3,4	 Coordinate Systems Vector and Scalar Quantities Some Properties of Vectors Components of a Vector and Unit Vectors. 	1,2,3,4, 5,6
2	23 Electric Field 3,4,5,6,7	 Coulomb's Law The Electric Field Electric Field of a Continuous Charge Distribution Electric Field Lines Motion of Charged Particles in a Uniform Electric Field. 	1,2,3,5,7 8,10,11
3	24 Gauss's Law 1,2,3,4	 Electric Flux Gauss's Law Application of Gauss's Law to Various Charge Distributions Conductors in Electrostatic Equilibrium 	2,3,4 5,6,7,8

PHYS 221: Electromagnetism-1 (4th level)

4	25 Electric Potential 1,2,3,4,5,6	 Electric Potential and Potential Difference Potential Difference in a Uniform Electric Field Electric Potential and Potential Energy Due to Point Charges Obtaining the Value of the Electric Field from the Electric Potential Electric Potential Due to Continuous Charge Distributions Electric Potential Due to a Charged Conductor 	1,2,3,4,5, 6,7,8,9
5	26 <u>Capacitance</u> <u>And</u> <u>Dielectrics</u> 1,2,3,4,5	 Definition of Capacitance Calculating of Capacitance Combinations of Capacitors Energy Stored in a Charged Capacitor Capacitors with Dielectrics Electric Dipole in an Electric Field An Atomic Description of Dielectrics An Atomic Description P Free and bound charges The electric displacement (D) Susceptibility, Permittivity, Dielectric Constant in linear dielectrics 	1,4,6,7
6	29 <u>Magnetic</u> <u>Field</u> 1, 2, 4, 5	 Magnetic Fields and Forces Magnetic Force Acting on a Current- Carrying Conductor Motion of a Charged Particle in a Uniform Magnetic Field Applications involving charged particles moving in a magnetic field (Velocity Selector - The Mass Spectrometer) The Hall Effect 	1, 6, 7,8
7	30 <u>Sources of</u> <u>the Magnetic</u> <u>Field</u> 1, 2, 3, 4,5, ,6,8	 The Biot -Savart Law The Magnetic Force Between Two Parallel Conductors Ampère's Law The Magnetic Field of a Solenoid Magnetic Flux Gauss's Law in Magnetism Magnetism in matter 	4, 8,10

PHYS 221: Electromagnetism-1 (4th level)

8	31 <u>Faraday's</u> <u>Law</u> 1, 2,3,4	 Faraday's Law of Induction Motional emf. Lenz's Law Induced emf and Electric Fields 	1,5,7
9	32 <u>Inductance</u> 1, 3	Self-InductanceEnergy in a Magnetic field	1,2
10	33 <u>Alternating</u> <u>Current</u> <u>Circuits AC</u> 1, 2, 3, 4, 5, 6, 7	 AC Sources Resistors in an AC circuit Inductors in an AC circuit Capacitors in an AC circuit The RLC Series Circuit Power in an AC Circuit Resonance in a Series RLC Circuit. 	1, 5, 6, 7

Course Evaluation

	Grade	Date
Midterm1	20%	TBA
Midterm2	20%	TBA
Homework	10%	Thursday
Participation	10%	
Final	40%	TBA