Main Topics of the lecture

- Introduction.
- One-step growth curve.
- Steps of multiplication cycle.
- Attachment.
- Penetration (entry).
- Uncoating.

Introduction

- Studies with the bacteriophages (at 1940/50s) and mammalian cell culture have revolutionized the progress of understanding virus replication.
- Every virus family employs a unique strategy for replication.
- One important concept to unify and simply the replication process was proposed by David Baltimore at 1978, to assign viruses to one of six classes based on their genome structure and the pathways they use to produce their mRNAs.

Steps of Virus Replication

- Attachment to target cell.
- Penetration (entry) from cell membrane.
- Uncoating.
- Expression (transcription and translation) of viral proteins.
- Replication of the viral nucleic acid.
- Virus assembly
- Maturation and release.

Virus Replication

I. Virus Entry and Uncoating

Steps in Replication cycle of virus

خطوات دورة تكاثر الفيروس

Virus attachment

One-step Growth Curve

One-step Growth Curve

- Defined by classical studies on cell culture, in which multiple cultures are infected simultaneously.
- The increase in infectious virus over time is followed by sequential sampling and titration.

Cell-free and Cell-associated

- Shortly after infection, the inoculated 'Cell-free' virus disappears (extra- and intra-cellular).
- This period extends for 2-12 hours, until first progeny viruses become detectable (Eclipse Period)

ATTACHMENT Click after each step to view process

1- Attachment

- To initiate infection, the virus must be able to bind to target cell.
- Binding occurs between:
 - Ligands on the virus surface
 - (viral attachment proteins)
 - Receptors on the plasma membrane of cell.

Although there is a degree of specificity, quite different viruses may utilize the same receptor and, conversely, viruses in the same family or genus may use different receptors

- Influenza viruses: Viral Haemagglutinin (HA) peplomer
 Sialic acid containing cell receptor
- HIV:

Viral surface glycoprotein gp120 subunit SU binds to cellular CD4 receptor.

Then the complex binds to a second cell receptor 'fusin' which displaces SU and brings TM subunit into contact with cell membrane.

TABLE 1. Protein viral receptors and coreceptors				
Virus	Family	Receptor	Function	
G-protein-coupled receptors				
HIV	Retroviridae	CXCR4	Chemokine receptor	
HIV	Retroviridae	CCR3	Chemokine receptor	
HIV	Retroviridae	CCR2b	Chemokine receptor	
HIV	Retroviridae	CCR8	Chemokine receptor	
HIV/SIV	Retroviridae	CCR5	Chemokine receptor	
HIV/SIV	Retroviridae	Bonzo/STRL-33/TYMSTR	Chemokine receptor	
HIV/SIV	Retroviridae	BOB/GPR15	Chemokine receptor	
SIV	Retroviridae	GPR1	Chemokine receptor	
Proteins with multiple membrane-spanning domains				
GALV/FeLV-B/SSAV	Retroviridae	PiT-1	Phosphate transport	
MLV-E	Retroviridae	MCAT-1	Cationic amino acid transport	
MLV-A	Retroviridae	PiT-2	Phosphate transport	
MLV-X/MLV-P	Retroviridae	XPR1/Rmc1/SYG1	Transporter	
Immunoglobulin-related proteins				
Poliovirus	Picornaviridae	PVR	Unknown	
PRV/BHV-1	Herpesviridae	PVR	Unknown	
HSV-1/HSV-2/PRV	Herpesviridae	Prr2/HveB	Unknown	
HSV-1/HSV-2/	Herpesviridae	Prr1/HveC	Unknown	
BHV-1/PRV				
Coxsackie B	Picornaviridae	CAR	Unknown	
Ad-2/Ad-5	Adenoviridae	CAR	Unknown	
MHV-A59	Coronaviridae	MHVR/Bgp1 (a)	Biliary glycoprotein	
Major rhinoviruses	Picornaviridae	ICAM-1	Cell adhesion/signaling	
HIV/SIV	Retroviridae	CD4	T-cell signaling	
HHV-7	Herpesviridae	CD4	T-cell signaling	
Low-density lipoprotein re	ceptor-related pro	oteins		
ALV-A	Retroviridae	TVA	Unknown	
Minor rhinoviruses	Picornaviridae	LDLR/a2MR/LRP	Lipoprotein receptors	
Integrins				
Adenovirus	Adenoviridae	ανβ3	Vitronectin binding	
Coxsackie A9	Picornaviridae	ανβ3	Vitronectin binding	
Adenovirus	Adenoviridae	ανβ5	Vitronectin binding	
Echoviruses-1/-8	Picornaviridae	α2β1	Collagen/laminin binding	
Tumor necrosis factor receptor-related proteins				
ALV-B/D/E	Retroviridae	TVB	Apoptosis-inducing receptor	
HSV-1	Herpesviridae	HveA	LIGHT receptor	
Small consensus repeat-containing proteins				
EBV	Herpesviridae	CR2	C3d/C3dg/iC3b binding	
Measles	Paramyxoviridae	CD46	Complement inhibition	
Echoviruses	Picornaviridae	CD55	Complement inhibition	
Coxsackie B-1/-3/-5	Picornaviridae	CD55	Complement inhibition	
Miscellaneous				
BLV	Retroviridae	BLVRcp1	Unknown	
Coronavirus-229E/TGEV	Coronaviridae	Aminopeptidase-N	Metalloproteinase	
LCMV/lassa fever virus	Arenaviridae	α-Dystroglycan	Laminin/agrin binding	
Sindbis	Togaviridae	Laminin receptor	Laminin binding	

TABLE 2. Carbohydrate viral receptors

Virus	Family	Receptor
Influenza A	Orthomyxoviridae	Sialic acid-containing oligosaccharides
Sendai	Paramyxoviridae	Sialic acid-containing oligosaccharides
Reovirus-3	Reoviridae	Sialic acid-containing oligosaccharides
Murine polyomavirus	Papovaviridae	Sialic acid-containing oligosaccharides
Canine parvovirus	Parvoviridae	Sialic acid-containing oligosaccharides
Influenza C	Orthomyxoviridae	9-O-acetylsialic acid
Human/bovine coronaviruses	Coronaviridae	N-acetyl-9-O-acetylsialic acid
HIV	Retroviridae	Galactosyl ceramide
HSV	Herpesviridae	Heparan sulfate
Human CMV	Herpesviridae	Heparan sulfate

HIV, human immunodeficiency virus; HSV, herpes simplex virus; CMV, cytomegalovirus.

2- Penetration (Entry)

 Following attachment, the virus enters the cell by one of two means:

1- Endocytosis:

- Receptor mediated endocytosis is a normal cell mechanism for the uptake of macromolecules.
- Many enveloped and nonenveloped viruses use this essential cell function to initiate infection.

Steps of Endocytosis:

- 1 Virion attachment to receptors, which cluster at clathrin-coated pits.
- 2- Endocytosis into clathrin-coated vesicles.
- 3- Vesicles enter the cytoplasm
- 4- After removal of the clathrin coat, vesicle fused with the endosome (acidic prelysosomal vacuoles).
- 5- Acidification within the vesicle triggers changes in virion proteins and surface structures.
- 6- These changes lead to the release of virus in the cytoplasm (e.g. fusion with the endonsomal membrane in influenza).

Receptor-mediated التحوصل من خلال مستقبلات -II Endocytosis

Fusion in Endosome Influenza virus

2. الدخول

II- التحوصل من خلال مستقبلات Receptor-mediated Endocytosis

Lysis of Endosome Adenovirus

تحلل الاندوسوم

2- Fusion:

- F (fusion) glycoprotein present in some viruses causes the envelope of these viruses to fuse directly with the plasma membrane of the cell.
- This allows the nucleocapsid to be released directly into the cytoplasm.
- e.g. Paramyxoviruses and some other enveloped viruses

Entry

Membrane Fusion Paramyxovirus + HIV

