Preparation and Dilution of Solutions

Solutions:

\square Understanding how to prepare solutions and make dilutions is an essential skill for biochemists which is necessary knowledge needed for doing any experiment.
\square What is SOLUTIONS ?
A simple solution is basically two substances that are evenly mixed together.
\rightarrow One of them is called the solute and the other is the solvent.
\rightarrow Solution can be composed from one or more solute dissolved in a solvent forming a homogenous mixture.

\square Example:

Solutions

A. Preparation of solutions:

\square Solution concentration define as: quantity of a substance dissolved in per unit quantity of another substance (the relative amounts of solute and solvent in a solution).
\square There are different ways to express concentration:

1. Molarity.
2. $\mathrm{W} / \mathrm{V} \%$.
3. $\mathrm{W} / \mathrm{W} \%$.

1. Molarity :

- Molarity define as : the number of moles of solute in one liter of a solution.
\square Molar $=$ number of mole/volume in L

- 1 Molar solution is a solution in which $\mathbf{1 \text { mole }}$ of solute is dissolved in a total volume of
$\mathbf{1}$ liter ($\mathbf{1 0 0 0} \mathbf{m l}$). (0.5 Molar (M) solution: that mean there are 0.5 mole dissolved in 1 L ..etc)
\square Units of molarity are : M, molar or mole/L

Example:

\rightarrow Concentration $=2 \mathrm{M}$, Solution volume $=100 \mathrm{ml} \rightarrow$ So, how many grams of NaCl I need to
prepare 2 Molar NaCl solution?
Two ways to solve it

2 mole of NaCl present in 1000 ml [or 1Liter] of solvent (dis. $\left.\mathrm{H}_{2} \mathrm{O}\right)$
And we know that \rightarrow No of mole $=$ weight $(\mathrm{g}) /$ molecular weight.
$[2$ mole $=$ weight $(\mathbf{g}) / 58.5] \rightarrow$ weight $(\mathbf{g})=2 \times 58.5=117 \mathrm{~g}$.
\rightarrow This weight needed if 1000 ml is required to be prepared. Since we need to prepare only 100 ml .

$[(100 \times 117) / 1000]=11.7 \mathbf{g}$
11.7 g of NaCl dissolved in small volume of dis. $\mathrm{H}_{2} \mathrm{O}$, then complete the volume up to 100 ml .

(2)

$$
\text { Molarity }=\frac{\text { weight }(\mathrm{g})}{\text { volume }(\mathrm{L}) \times \text { M.W }}
$$

Molarity $=2 \mathrm{M}$
Solution volume $=100 \mathrm{ml} \rightarrow$ convert to $\mathrm{L}=100 / 1000=0.1 \mathrm{~L}$
Molecular weight $(\mathrm{M} . \mathrm{W})=58.5 \mathrm{~g} /$ mole
Weight $=$?
So:
Weight $=$ Molarity x volume in L x M.W
Weight $=2 \times 0.1 \times 58.5=11.7 \mathrm{~g}$
11.7 g of NaCl dissolved in small volume of dis. $\mathrm{H}_{2} \mathrm{O}$, then complete the volume up to 100 ml .

Practically how to prepare $\mathbf{2 M} \mathbf{N a C l}$:

1. Place a beaker in a balance and zero the balance.
2. Weight 11.7 grams of NaCl , in the beaker and dissolve it in a little water (less than 100 ml).
Once the solid is dissolved the volume is transferred to 100 ml volumetric flask.
3. Brought up to a final volume 100 ml by water.
$\square \mathrm{W} / \mathrm{V} \% \rightarrow$ Weight/Volume Percentage Concentration.
\square W/V\% define as : The number of grams of solute dissolved in $\mathbf{1 0 0} \mathbf{~ m L}$ of solution ($\%=100$).

$$
\mathrm{W} / \mathrm{V} \%=\frac{\text { weight of solute in }(\mathrm{g})}{\text { volume of solution in }(\mathrm{ml})} \times 100
$$

\square For example: $3 \mathrm{w} / \mathrm{v} \% \mathrm{NaOH} \rightarrow$ Mean 3 grams of NaOH is dissolved in 100 ml of the solution.

Example:

How to Prepare 50 ml of $4 \mathrm{w} / \mathrm{v} \% \mathrm{NaOH}$?

$4 \% \mathrm{NaOH} \rightarrow$ Mean 4 grams of NaOH is dissolved in 100 ml of the solution.

The Weight in grams of NaOH needed to prepare $4 \% \mathrm{NaOH}$ is $=(4 \times 50) / 100=2 \mathrm{~g}$.
So,
2 grams of NaOH is dissolved in little water and the volume made up to 50 ml .

3. W/W \% :

$\square \mathrm{W} / \mathrm{W} \% \rightarrow$ Weight/Weight Percentage Concentration.
$\square \mathbf{W} / \mathbf{W} \%$ define as: the number of grams of solute dissolved in $\mathbf{1 0 0} \mathbf{~ g r a m}$ of solution. $(\%=100)$.

$$
\mathrm{W} / \mathrm{W} \%=\frac{\text { weight of solute in }(\mathrm{g})}{\text { weight of solution in }(\mathrm{g})} \quad \times 100
$$

\square The concentrations of many commercial acids are giving in terms of $w / w \%$.
\rightarrow In order to calculate the volume of the stock solution required for a given preparation the density (specific gravity) of stock solution should be provided.

$$
\text { Weight }(\mathrm{wt})=\text { volume }(\mathrm{ml}) \times \text { SG } \times \mathrm{w} / \mathbf{w} \% \text { (as decimal) }
$$

\rightarrow To calculate $\mathrm{w} / \mathrm{w} \%$ as decimal $=(\mathrm{w} / \mathrm{w}) / 100$, For example: $\mathrm{w} / \mathrm{w} \%=13 \% \boldsymbol{\rightarrow} 13 / 100=\mathbf{0 . 1 3}$

Example:

How to Prepare 100 ml with 0.4 M HCl solutions starting with the
concentrated HCl solution you are provided with: $(\mathrm{w} / \mathrm{w} \%=36 \%, \mathrm{~S} . \mathrm{G}=1.15)$?

how many ml of concentrated HCl we need to make 0.4 M HCl solution?

Weight= volume (ml) x SG x w/w\% (as decimal)

First we must calculate the weight by the following:
from molarity formula \rightarrow Mole=Molarity x volume in liter

$$
=0.4 \times 0.1=\mathbf{0 . 0 4} \text { mole }
$$

\rightarrow Weight $=$ mole \times MW \quad (Note: The MW of $\mathrm{HCl}=36.4$)

$$
=0.04 \times 36.5=1.46 \mathrm{~g}
$$

Second:
Weight $(\mathbf{w t})=$ volume $(\mathbf{m l}) \mathbf{x}$ SG $\mathbf{x} \mathbf{w} / \mathbf{w} \%($ as decimal $) \rightarrow 1.46=$ volume $\times 1.15 \times 0.36$
\rightarrow Volume $=3.53 \mathrm{ml}$
So, 3.53 ml of stock (i.e. concentrated HCl) solution is needed and the volume made up to 100 ml by the addition of water.

B. Dilution of Solution :

\square Dilution of solution: means to add more solvent without the addition of more solute \rightarrow To make it less concentrated.

Volume to volume dilutions (ratio).
2. Preparing dilutions by using the $\mathrm{V}_{1} \mathrm{XC}_{1}=\mathrm{V}_{2} \mathrm{XC}_{2}$ formula.
3. Serial Dilutions.

Stock solution before dilution

The two beakers contain the same number of moles of solute.

(1) Volume to volume dilutions (ratio):

\square This type of dilutions describes the ratio of the solute to the final volume of the dilute solution.
\square For example: to make $1: 10$ dilution of 1 M NaCl solution, one part of the $\mathbf{1 M ~ N a C l}$ solution, should be mixed with nine parts of water, for a total of ten parts.
\square Therefore 1:10 dilution means $\rightarrow 1$ part of $1 \mathrm{M} \mathrm{NaCl}+9$ parts of water.
\square Thus:

\rightarrow if 10 ml of the $1: 10$ dilution was needed, then 1 ml of 1 M NaCl should be mixed with 9 ml of water.
\rightarrow if 100 ml of $1: 10$ dilution was needed, then 10 ml of the 1 M NaCl should be mixed with 90 ml of water. [The final concentration of NaCl in both cases will be $0.1 \mathrm{M}(1 / 10)=0.1$]
\square Example:

Example:

How to Prepare $2: 10$ dilution of solution (A) with 7 M , but the total volume is 20 ml not 10 ml ?
how many ml of 7 M solution A we need
to make 20 ml of $2: 10 \mathrm{~A}$ solution?
$\underbrace{2 \mathrm{ml} \rightarrow}_{? ~} \mathrm{ml}_{20 \mathrm{ml}}^{2 \mathrm{ml} \rightarrow 10 \mathrm{ml}}$
$=(2 \mathrm{X} 20) / 10=4 \mathrm{ml}$

So, 4 ml from solution (A) of 7 M is needed and complete volume up to 20 ml (adding 16 ml water).
Note: $[16 \mathrm{ml}$ water $=20 \mathrm{ml}-4 \mathrm{ml}]$.

How to Know the concentration of solution A after dilution?

First we will find the DILUTION FACTOR by the following :
Dilution factor (D.F) = final volume / aliquot volume

$$
=10 / 2=5
$$

Then we will divide the stock concentration (before dilution) by the D.F:

$$
7 / 5=1.4 \mathrm{M}
$$

Note: To find out the stock concentration you will multiply the diluted concentration by the D.F

(2) Preparing dilutions by using the $\mathrm{V}_{1} \mathrm{XC}_{1}=\mathrm{V}_{2} \mathrm{XC}_{2}$ formula:

\square Sometimes it is necessary to use one solution to make a specific amount of a more dilute solution .
\square To do this the following formula can be used:

$\mathrm{V}_{1} \mathrm{X} \mathrm{C}_{1}=\mathrm{V}_{2} \mathrm{X} \mathrm{C}_{2}$

\square Where:
> $\mathrm{V}_{1}=$ Volume of starting solution needed to make the new solution (volume of stock solution).
> $\mathrm{C} 1=$ Concentration of starting solution (stock solution).
> $\mathrm{V} 2=$ Final volume of new solution.

- $\mathrm{C} 2=$ Final concentration of new solution.

Example:
 Make 5 ml of 0.25 M solution from a 1.0 M solution?

```
how many ml of 1M solution we need to
    make 5 ml of 0.25M solution?
```

 \(\rightarrow \mathrm{V}_{1} \mathrm{XC}=\mathrm{V}_{2} \mathrm{XC}_{2}\)
 Where: $\mathrm{V}_{1}=? \quad, \mathrm{C}_{1}=1 \mathrm{M} \quad, \mathrm{V}_{2}=5 \mathrm{ml} \quad, \mathrm{C}_{2}=0.25 \mathrm{M}$

So: $\quad(\mathrm{V} 1) \mathrm{x}(1 \mathrm{M})=(5 \mathrm{ml}) \times(0.25 \mathrm{M})$
$\rightarrow \mathrm{V} 1=(5 \times 0.25) / 1=\mathbf{1 . 2 5} \mathbf{m l}$
So 1.25 ml of the 1 M solution is needed (starting solution) then complete the volume up to 5 ml by diluent (generally water).

(3) Serial Dilutions :

\square It is a stepwise dilution of a solution, where the dilution factor is constant at each step.
\square The source of dilution material for each step comes from the diluted material of the previous step.

Dilution factor (D.F) = final volume / aliquot volume $=10 / 1=10$ (for each step)

Find out the concentration of the diluted solutions:

Dilution factor (D.F) $=$ final volume $/$ aliquot volume $=10 / \mathbf{1}=\mathbf{1 0}$ (for each step)

From the lower concentrated solution to the higher one

From the more concentrated solution to the lower one

Example:

Starting with a 2.0 M stock solution of hydrochloric acid, prepare four standard solutions by serial dilution of the following Molarity respectively $1 \mathrm{M}, 0.5 \mathrm{M}, 0.25 \mathrm{M}, 0.125 \mathrm{M}$. [with $1: 2$ dilution]?
\rightarrow Dilution factor $($ D.F $)=$ final volume $/$ aliquot volume

$$
=2 / 1=\mathbf{2} \rightarrow 1: 2
$$

-To prepare standard solution 1:
1 ml of the stock 2.0 M solution is needed and volume made up to 2 ml with distilled water (never forget to mix properly).
-To prepare standard solutions 2-4:
1 ml of the previously diluted solution is taken and volume is made up to a final volume of 2 ml by the addition of distilled water.

how to calculate the concentration of the diluted solutions if they unknown?

\rightarrow First: find the D.F:

Dilution factor (D.F) = final volume $/$ aliquot volume

$$
=2 / 1=\underline{\mathbf{2}}
$$

\rightarrow Second: divide the previous solution concentration by the D.F:
-concentration of solution $\mathbf{1}=2.0 \mathrm{M}$ stock solution $/ 2=1 \mathrm{M}$
-concentration of solution $2=1 \mathrm{M} / 2=0.5 \mathrm{M}$
-concentration of solution $3=0.5 \mathrm{M} / 2=\mathbf{0 . 2 5} \mathrm{M}$
-concentration of solution $4=0.25 / 2=0.125 \mathrm{M}$

Prociical Pap

Objectives:

\square To learn how to prepare solutions with different concentration expression.
\square To get familiar with solution dilutions by different methods.

Method:

A。 Preparatiom of solutioms:

(1) \qquad
\square You are provided with solid NaOH , Prepare 50 ml with 0.08 M NaOH solution.
\square Calculation:
\qquad
\qquad
\rightarrow To prepare the 0.08 M NaOH solution $\ldots \ldots$. g of solid NaOH should be dissolved in a little volume of water then the volume made up toml ,by the addition of water.

Method:

(2) \qquad
$\square \quad$ You are provided with solid NaCl , Prepare 50 ml with $1.5 \mathrm{w} / \mathrm{v} \%$ solution of NaCl .
\square Calculation:
\rightarrow To prepare the $1.5 \mathrm{w} / \mathrm{v} \%$ solution $\ldots \mathrm{g}$ of NaCl should be dissolved in little water and the volume made up to .ml by the addition of water.

Method:

(3) \qquad
\square Prepare 100 ml with 0.4 M HCl solutions starting with the concentrated HCl solution you are provided with: ($\mathbf{w} / \mathbf{w} \%=36, S . G r=1.15$).
\square Calculation:
\qquad
\qquad
\rightarrow To prepare the 100 ml of 0.4 M HCl solution .ml of stock (i.e. concentrated HCl) solution is needed and the volume made up to ml by the addition of water.
\rightarrow Measure and record the pH value of the acid you prepared \qquad
\rightarrow Calculate the pH of the $\operatorname{acid}(\mathrm{pH}=-\log [\mathrm{H}+])$ \qquad
\rightarrow Determine your accuracy?

Method:

Bo Sollutiom dillutioms:

(1) \qquad
\square Prepare 50 ml with $1: 20$ dilution using the 0.08 M NaOH solution you previously prepared.

- Calculation:
\rightarrow To prepare the $1: 20$ dilution $\ldots \ldots \mathrm{ml}$ of the starting solution $(0.08 \mathrm{M} \mathrm{NaOH})$ is needed and volume made up to a final volume ofml.

Method:

(2)
\square Prepare 100 ml of $\mathbf{0 . 2 \mathrm { M }} \mathbf{H C l}$ from the previously 0.4 M HCl solution you previously prepared.
\square Calculation:
\rightarrow To prepare the $0.2 \mathrm{M} \mathrm{HCl} \ldots \mathrm{ml}$ of the starting solution $(0.4 \mathrm{M} \mathrm{HCl})$ is needed and volume made up to a total volume of ml by adding water.

Method:

(3)

- Starting with a 2.0 M stock solution of hydrochloric acid, prepare 8 ml of four standard solutions (1 to 4) of the following Molarity respectively (dilution 2:8) :
(1)

M (2) M
(3)

M (4)
M.

- Calculation:
\rightarrow To prepare standard solution $1: \ldots \ldots . . \mathrm{ml}$ of the stock 2.0 M solution is needed and volume made up to $\ldots \mathrm{ml}$ with distilled water.
\rightarrow To prepare standard solution 2-4: $\ldots \ldots \ldots . \mathrm{ml}$ of the previously diluted solution $(8.00 \times 10-2 \mathrm{M})$ is taken and volume is made up to a final volume of $\ldots . . \mathrm{ml}$ by the addition of distilled water.

Homework:

1. A student needed to prepare 1 L of a 1 M NaCl solution, which of the following methods is more accurate in preparing the solution? Why?
a) Weighing 58.5 g of solid NaCl carefully , dissolving it in 300 ml of water, then adding 700 ml of water.
b) Weighing 58.5 g of solid NaCl carefully, dissolving it in a small volume of water then making the final volume up to 1 L by adding water.
2. List the most important points to be considered when preparing solutions.
3. A solution was prepared by taking 6 ml of a 0.22 M solution and then the volume was made up to a final volume of 30 ml . What is the concentration of the final solution.?
4. How would you prepare 80 ml of a $1: 25$ dilution of a 2.1 M KCl solution?
5. How would you prepare 50 ml of a $6 \% \mathrm{NaCl}$ solution?
