
• Development of mathematical models from schematics of physical systems.
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Mathematical Models of Systems

• Two Methods:

Transfer functions in the frequency domain,

State equations in the time domain.

by applying the fundamental physical 

laws of science and engineering.

a. Block diagram representation of a system;

b. block diagram Representation of an 

interconnection of subsystems

Note: The input, r(t), stands for reference input.

The output, c(t), stands for controlled variable.

• Transfer function (mathematical function), is inside each block.

From mathematical model  
equations we will obtain the 
relationship between the 
system's output and input.
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Laplace Transform Review

• By using Laplace transform we can represent the 

input, output, and system as separate entities.

• A differential equation can describe the relationship 

between the input and output of a system.

Laplace transform can be defined as:

Inverse Laplace transform:

Where 𝑠 = 𝜎 + 𝑗𝜔, a complex variable

Multiplication of f(t) by u(t) 
yields a time function that 
is zero for t < 0.

• A system represented by a differential equation is 

difficult to model as a block diagram.

Modeling in Frequency Domain
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Laplace Transform Table

Problem:  Find the Laplace transform of

Solution:
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Laplace Transform Theorems

Inverse Laplace Transform

Problem: Find inverse Laplace Transform of

Solution:

Table 2.2

Frequency shift theorem item 4 of Table 2.2,
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Inverse Laplace: Partial-Fraction Expansion
A partial-fraction expansion: transform of a complicated function to a sum of simpler terms for which we know the Laplace 

transform of each term.

Case 1. (Roots of the Denominator of F(s) Are Real and Distinct)

Problem:

Solution:

Final solution:

Taking the inverse 

Laplace transform,

The order of N(s) > order of  D(s) we must perform the division until we obtain a 
remainder whose numerator is of order less than its denominator

(𝑠3+3𝑠2 + 2 𝑠)

𝑠3 + 4𝑠2 + 6 𝑠 + 5

𝑠 + 1

𝑠2 + 3 𝑠 + 2

𝑠2 + 4 𝑠 + 5

(𝑠2+3 𝑠 + 2)−

−

𝑠 + 3
(Table 2.2 Item 7)

Partial-Fraction Expansion

=
𝑁(𝑠)

𝐷(𝑠)
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Laplace Transform Solution of
a Differential Equation

Problem: Solve for y(t), if all initial conditions are zero.

Solution: The Laplace transform is,

Taking inverse Laplace transform, we get

(Table 2.2 Item 8)

inverse Laplace transform
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Inverse Laplace: Partial-Fraction Expansion

Problem: Find inverse Laplace transform of

Case 2. (Roots of the Denominator of F(s) Are Real and Repeated)

reduced 
multiplicity

Solution:

We can write the partial-fraction 

expansion as a sum of terms

To find 𝐾2, multiply (1) = (2) by (𝑠 + 2)2

Letting 𝑠 → −2,𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛 𝐾2 = −2

To find 𝐾3, differentiate (3) w.r.t. s:

Letting 𝑠 → −2,𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛 𝐾3 = −2

Therefore, inverse Laplace transform is:

For repeated roots with multiplicity r, we have 

(2) 

(3) 

(1) 
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Inverse Laplace: Partial-Fraction Expansion
Case 3. (Roots of the Denominator of F(s) Are Complex or Imaginary)

Problem: Find inverse Laplace transform of
Solution:

This function can be expanded in the following form:

𝐾1 is found in the usual way:

To find 𝐾2 and 𝐾3 :

Multiply (1) by 𝑠(𝑠2 + 2 𝑠 + 5), and put 𝐾1 = Τ3 5

Balancing coefficients(matching)

Hence,

Using Item 7 in Table 2.1 and Items 2 and 4 in Table 2.2, we get

Adding,

𝐾3 +
6

5
= 0

𝐾2 +
3

5
= 0

We have, 𝑠2 + 2𝑠 + 5 = 𝑠2 + 2𝑠 + 1 + 4 = 𝑠 + 1 2 + 22

𝑎 = 1 𝑎𝑛𝑑 𝜔 = 2

3 =
3

5
𝑠2 + 2 𝑠 + 5 + 𝐾2 𝑠

2 + 𝐾3 𝑠
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Transfer Function
• A Transfer Function is the ratio of the output of a system to the input of a system. It allows us to algebraically combine 

mathematical representations of subsystems to yield a total system representation.

• General nth order, linear time-invariant differential equation:

c: output, r: input

Taking Laplace transform,

Transfer function:

Block diagram of a transfer function

G(s)
𝑅(𝑠) 𝐶(𝑠)

input output

𝐶 𝑠 = 𝐺 𝑠 𝑅(𝑠)

We can find the output
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Transfer Function for a Differential Equation

Problem 1: Find the transfer function represented by

Solution:

Taking Laplace transform and assuming zero initial conditions, we have

Transfer function, G(s),

Problem 2: Find the transfer function represented by

Solution:
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Problem Solving

Problem:     Find the ramp response for a system whose transfer function is

Solution: The input (ramp)

Hence,
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Electric Network Transfer Functions

Apply the transfer function to the mathematical modeling of electronic circuits including passive networks and O-Amp 

circuits.

Table 2.3

Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors
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Transfer Function: Single Loop
Problem:             Find the transfer function relating capacitor voltage, 𝑉𝑐(𝑠), to input voltage, 𝑉 𝑠 .

RLC network Laplace-transformed

network

We know,

Summing the voltages around the loop,

𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑅𝑖 𝑡 +

1

𝐶
න
0

𝑡

𝑖 𝜏 𝑑𝜏 = 𝑉(𝑡)

take the Laplace transform

𝑉𝐶 𝑠 =
1

𝐶 𝑠
𝐼(𝑠) 𝑉𝑅 𝑠 = 𝑅 𝐼(𝑠)𝑉𝐿 𝑠 = 𝐿 𝑠 𝐼(𝑠)

Capacitor Inductor Resistor

Laplace-transform

input output

input output
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Transfer Function: Single Node
Transfer functions also can be obtained using Kirchhoff's current law and summing currents flowing from nodes. currents 
leaving the node are positive and currents entering the node are negative.

Node

𝐼𝐶

𝐼𝑅𝐿
Same current𝐼𝑖𝑛 =𝐼𝑜𝑢𝑡 𝐼𝑐(𝑠) = 𝐼𝑅𝐿(𝑠)

input output

𝑉𝑐
𝑍𝑐

−
𝑉𝑅𝐿
𝑍𝑅𝐿

= 0

𝑉𝑅𝐿 = −(𝑉𝑐 − V)
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Transfer Function: Single Loop
via Voltage Division

Voltage across capacitor is some proportion of 

the input voltage.

Which one is the easiest? Method 1, method 2, or method 3?

𝑉𝑖 𝑉𝑜

𝑍1

𝑍2

𝑖(𝑡)

𝑉𝑖 = 𝑍1 + 𝑍2 𝑖 𝑡 (1)

𝑉𝑜 = 𝑍2 𝑖 𝑡 (2)

𝑉𝑜
𝑉𝑖
=

𝑍2
𝑍1 + 𝑍2

(2)

(1)

input output



node 𝑉𝐿(𝑠)
node  𝑉𝐶(𝑠)

input output

𝐼𝑅1

𝐼𝐿
𝐼𝑅2

𝐼𝐶𝐼𝑅2

node 𝑉𝐿(𝑠) node 𝑉𝐶(𝑠)
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Complex Circuits via Nodal Analysis1

Complex electrical networks (those with multiple loops and nodes). We use nodal analysis to find the transfer function 
𝑉𝐶(𝑠)

𝑉(𝑠)

sum currents at the nodes

Current from node  𝑉𝐶(𝑠)

Expressing resistances as conductances,

Transfer function:

𝐼𝑅1 + 𝐼𝐿 + 𝐼𝑅2 = 0

𝐼𝐶 + 𝐼𝑅2 = 0And 

𝑉𝐿 𝑠 =
𝐺2 + 𝐶𝑠

𝐺2

(1)

(2)
(1)(2) in 𝑉𝐶(𝑠)

𝑉(𝑠)
=

𝐺1𝐺2𝐿𝑠

𝐺1 + 𝐺2 𝐿𝐶𝑠2 + 𝐶 + 𝐺2 𝐺1 + 𝐺2 𝐿 − 𝐺2
2𝐿 𝑆 + 𝐺2

Divide by LC

Current from node  𝑉L(𝑠)
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Complex Circuits - Mesh Equations via Inspection2

Three loop

electrical network

Sum of
impedances

around
Mesh 1

× 𝐼1 𝑠 −

Sum of
impedances
common to

Mesh 1 and mesh2

× 𝐼2 𝑠 −

Sum of
impedances
common to

Mesh 1 and mesh3

× 𝐼3 𝑠 =
Sum of applied
voltages around

Mesh 1
For Mesh 1:

For Mesh 1:

For Mesh 2:

For Mesh 3:

Similarly, Meshes 3, we obtain

For Mesh 2: -

Sum of
impedances
common to

Mesh 1 and mesh2

× 𝐼1 𝑠 +

Sum of
impedances

around
Mesh 2

× 𝐼2 𝑠 −

Sum of
impedances
common to

Mesh 2 and mesh3

× 𝐼3 𝑠 =
Sum of applied
voltages around

Mesh 2

which can be solved simultaneously for any desired transfer 

function, for example, 𝐼3(𝑠)/𝑉(𝑠)

For Mesh 3: -

Sum of
impedances
common to

Mesh 1 and mesh3

× 𝐼1 𝑠 −

Sum of
impedances
common to

Mesh 2 and mesh3

× 𝐼2 𝑠 +

Sum of
impedances

around
Mesh 3

× 𝐼3 𝑠 =
Sum of applied
voltages around

Mesh 3
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Operational Amplifier
An operational amplifier is an electronic amplifier used as a basic building block to implement transfer functions. It has the 

following characteristics:

1. Differential input, 𝑣2 𝑡 − 𝑣1 𝑡
2. High input impedance, 𝑍𝑖 = ∞ (𝑖𝑑𝑒𝑎𝑙)
3. Low output impedance, 𝑍0 = 0 (𝑖𝑑𝑒𝑎𝑙)
4. High constant gain amplification, 𝐴 = ∞ (𝑖𝑑𝑒𝑎𝑙)

The output, v0(t), is given by:  𝑣0 𝑡 = 𝐴(𝑣2 𝑡 − 𝑣1 𝑡 )

a. Operational amplifier;

b. schematic for an inverting operational amplifier;

c. Inverting operational amplifier configured for transfer

function realization. Typically, the amplifier gain, A, is omitted.

as 𝐼𝑎 𝑠 = 0, because of high input impedance

𝑉𝑖 𝑠 = 𝑍1 s 𝐼1(𝑠)

𝑉𝑜 𝑠 = 𝑍2 s 𝐼2(𝑠)

𝐼1 𝑠 = −𝐼2(𝑠)
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Problem Solving
Inverting Operational Amplifier

Problem:    Find the transfer function, 
𝑉0 𝑠

𝑉𝑖 𝑠
, for the circuit below.

Solution:

For parallel components, Z1 𝑠 is the 

reciprocal of the sum of the admittances.

For serial components, Z2 𝑠 is the sum

of the impedances.
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Non-inverting Operational Amplifier

Using voltage division,

For large A, we disregard '1‘ in the denominator.

We have:

𝑉0 𝑠 = 𝑍1 s + 𝑍2 s 𝐼(𝑠)

𝑉1 𝑠 = 𝑍1 s 𝐼(𝑠)

𝑉0 𝑠 = 𝐴 𝑉𝑖 𝑠 −
𝑍1 s

𝑍1 s + 𝑍2 s
𝑉𝑜 𝑠

𝑉0 𝑠 1 + 𝐴
𝑍1 s

𝑍1 s + 𝑍2 s
= 𝐴 𝑉𝑖 𝑠

𝐼(𝑠)
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Problem Solving
Non-Inverting Operational Amplifier

Now use the following equation:

PROBLEM: Find the transfer function, V0(s)/Vi(s), for the Non-inverting operational amplifier circuit

Non-inverting operational amplifier circuit

SOLUTION:

We find each of the impedance functions,

and

Substituting yields

𝑉0(𝑠)

𝑉1(𝑠)
=

𝑅1𝐶1𝑠 + 1

𝐶1𝑠
+

𝑅2
𝑅2𝐶2𝑠 + 1

𝐶1𝑠

𝑅1𝐶1𝑠 + 1
= 1 +

𝑅2𝐶1𝑠

(𝑅2𝐶2𝑠 + 1)(𝑅1𝐶1𝑠 + 1)

𝑉0(𝑠)

𝑉1(𝑠)
= 1 +

𝑅2𝐶1𝑠

𝑅1𝑅2𝐶1𝐶2𝑠
2 + 𝑅2𝐶2𝑠 + 𝑅1𝐶1𝑠 + 1

=
𝑅1𝐶1𝑠 + 1

𝐶1𝑠
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Translational Mechanical System Transfer Functions

Table 2.4

Force-velocity, force-displacement,

and impedance translational

relationships

for springs, viscous dampers, and

mass

𝐾: Spring constant

𝑓𝑉: Coefficient of viscous friction

M: Coefficient of mass

Mechanical systems (like electrical networks) have three passive linear components: Spring and the mass (energy-storage 

elements); and viscous damper (dissipates energy).
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Transfer Functions: One Degree of Freedom

Mass, spring, and damper system

Find the transfer function, X(s)/F(s), for the system

Transformed free body diagram

Sum of impedances × X(s) = Sum of applied forces (zero initial conditions)

Transfer function

Free-body diagram of mass, 

spring, and damper system;

LT

Spring force

Viscous 

damper force

mass force

the mass is traveling 

toward the right

Applied force

• All the forces impede (obstruct and block) the motion and act to oppose the applied force.

Differential equation of motion (Newton's law)

𝑀
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝑓𝑣

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝐾𝑥 𝑡 = 𝑓(𝑡)

LT

Solving for the transfer function yields
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Transfer Functions: Two Degrees of Freedom

• Find the transfer function, X2 (s)/F(s), for the system

Two-degrees-of-freedom : since Each mass can be moved in the horizontal 
direction while the other is held still.

Number of differential equations required to describe the system is equal to the number of linearly independent motions (degrees 
of freedom).

Two-degrees-of-freedom translational mechanical system

The Laplace transform of the equation of motion of  M1

(1)

𝐴 𝑋1 𝑠 − 𝐵𝑋2 𝑠 = 𝐹 (1)

a. Forces on M1 due only to motion of M1

b. forces on M1 due only to motion of M2

c. all forces on M1

hold M2 and move M1 hold M1 and move M2

total force on M1 
(superposition or sum)\

Forces on M1 
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Transfer Functions: Two Degrees of Freedom Continued

a. Forces on M2 due only to motion of M2;

b. forces on M2 due only to motion of M1;

c. all forces on M2

where hold M1 and move M2 hold M2 and move M1

total force on M1 (superposition or sum)\

Forces on M2 

Transfer function:

The Laplace transform of the equation of motion of  M2

2 𝑖𝑛 1

−𝐶 𝑋1 𝑠 + 𝐷𝑋2 𝑠 = 0 𝑋1 𝑠 =
𝐷

𝐶
𝑋2 𝑠

𝐴
𝐷

𝐶
𝑋2 𝑠 − 𝐵𝑋2 𝑠 = 𝐹

𝑋2 𝑠

𝐹 𝑠
=

𝐶

𝐴𝐷 − 𝐶𝐵

(2)

D
eterm

in
an

t
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Transfer Functions:
Three Degrees of Freedom

• Write, the equations of motion for the mechanical network

• The system has three degrees of freedom, since each of the 

three masses can be moved independently while the others 

are held still.

• The form of the equations will be similar to electrical mesh equations

Sum of
impedances
connected

to the motion
at x1

X1 𝑠 −

Sum of
impedances
between
x1and x2

X2 𝑠 −

Sum of
impedances
between
x1and x3

X3 𝑠 =
Sum of

applied forces
at x1

For M1:

Similarly, for M2 and M3, we obtain
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Nonlinearity

Linear systems have two properties: (1) additivity, and (2) homogeneity.

1. Additivity (superposition):

2. Homogeneity:

Linear system Nonlinear system
Some physical nonlinearities

Amplifier saturation

Motor dead zone

motor does not respond at very low 
input voltages due to frictional 
forces exhibits a nonlinearity called 
dead zone
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Linearization

• Making linear approximation to a nonlinear system.

Linearization about a point A

• If the system is nonlinear, we must linearize the system before we 

can find the transfer function.

• For a nonlinear system operating at point A: 𝑥0 , 𝑓(𝑥0)

Linear approximation : 

small changes in the input 𝛿𝑥 small changes in the output 𝛿𝑓(𝑥)

related by the Slope 𝑚𝐴 (line) 

of the curve at the point A

𝛿𝑓 𝑥 ≈ 𝑚𝐴 𝛿𝑥

Thus, 𝑓 𝑥 − 𝑓 𝑥0 ≈ 𝑚𝐴(𝑥 − 𝑥0)

𝑓 𝑥 ≈ 𝑓 𝑥0 +𝑚𝐴 𝑥 − 𝑥0 = 𝑓 𝑥0 +𝑚𝐴 𝛿𝑥

Derivative of 𝑓(𝑥) at 𝑥 = 𝑥0

𝑓 𝑥 ≈ 𝑓 𝑥0 +𝑚𝐴 𝛿𝑥
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Linearizing a Function

Problem: Linearize  𝑓 𝑥 = 5 𝑐𝑜𝑠 𝑥 about 𝑥 = Τ𝜋 2.

Solution:

𝑓 𝑥 = −5 𝛿𝑥 for small excursions of x about Τ𝜋 2

We first find that the derivative of 𝑓 𝑥 at 𝑥 = Τ𝜋 2

Also 

the system can be represented as

Slope at 𝑥 =
𝜋

2
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Modeling in The Time Domain
State-space Method

Two approaches are available for the analysis and design of feedback control systems.

1. Frequency domain approach (classical approach):

based on converting a system’s differential equation to a transfer function.

• Advantage: rapidly providing stability and transient response information. Thus

we can immediately see the effects of varying system parameters.

• Disadvantage: limited application. It can be applied only to linear, time-invariant

systems or systems that can be approximated as such.

2. State-space approach (time domain / modern approach):

Can be used: a) To represent non-linear systems that have backlash, saturation, dead zone.

b) It can handle systems with nonzero initial conditions.

c) Multiple-inputs, multiple-outputs systems can easily be represented.

d) Many commercial software packages are available.
Many calculation is needed 

before actual realization.

a sudden, forceful  

backward movement

Dead Zone
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RL Network: State-Space Representation

RL network

1. Select a state variable (possible system variable) : say 𝑖(𝑡).

2. Write differential equation (in terms of the state 

variable 𝑖(𝑡)).

loop equation 

(State Equation)

3. Take Laplace transform:

If 𝑣 𝑡 = 𝑢 𝑡 , 𝑡ℎ𝑒𝑛 𝑉 𝑠 = Τ1 𝑠.

𝐼 𝑠 =
1

𝑅

1

𝑠
−

1

𝑠 +
𝑅
𝐿

+
𝑖(0)

𝑠 +
𝑅
𝐿

Inverse Laplace transform:

4. Output equations: Self Study

Do the State-space representation 

of RLC network.

The state-space approach for representing physical systems (state equations and the output equations are a viable (feasible) representation of the 

system.).

Algebraically combine the state variables with the 

system's input and find all of the other system 

variables for 𝑡 ≥ 𝑡0.

solve for 𝐼 𝑠 : 𝐼 𝑠 =
𝑉(𝑠)

(𝐿𝑠 + 𝑅)
+

𝐿 𝑖(0)

𝐿𝑠 + 𝑅

𝐼 𝑠 =
1

𝑠(𝐿𝑠 + 𝑅)
+

𝐿 𝑖(0)

𝐿𝑠 + 𝑅

𝐼 𝑠 =
𝐴

𝑠
+

𝐵

𝐿𝑠 + 𝑅
+

𝐿 𝑖(0)

𝐿𝑠 + 𝑅

We can determine 

the state variable
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The General State-Space Representation

Some Terminology

• Linear combination: (of 𝑛 variables 𝑥𝑖)

• Linear independence: S is zero if every K is zero and no x is zero: variables x are linearly independent. 

• System variable: Any variable that responds to an input or initial conditions in a system.

• State variables: The smallest set of linearly independent system variables that completely determines (knowing the value at 

𝑡0) the value of system variables for 𝑡 ≥ 𝑡0

• State vector: A vector whose elements are state variables.

• State space: The 𝑛-dimensional space whose axes are the state variables.

• State equations: A set of 𝑛 simultaneous, first-order differential equations with 𝑛 variables (state variables).

• Output equations: The equation that expresses the output variables of a system as linear combinations of the state variables 

and the inputs.

none of the variables can be written as 
a linear combination of the others.
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State-space Representation

ቊ
ሶ𝑥 = 𝐴 𝑥 + 𝐵 𝑢
𝑦 = 𝐶 𝑥 + 𝐷 𝑢

• A system is represented in state-space by the following equations:

State equation

Output equation

• This representation of a system provides complete knowledge of all variables of the system at any 𝑡 ≥ 𝑡0

• The choice of state variables: • minimum number  (equals the order of the differential equation).
• is not unique.

• are linearly independent.

𝑥: 𝑠𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑡
ሶ𝑥: 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑤. 𝑟. 𝑡. 𝑡𝑖𝑚𝑒
𝑦: 𝑂𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟
𝑢: 𝑖𝑛𝑝𝑢𝑡 𝑜𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑣𝑒𝑐𝑡𝑜𝑟
𝐴: 𝑠𝑦𝑠𝑡𝑒𝑚 𝑚𝑎𝑡𝑟𝑖𝑥
𝐵: 𝑖𝑛𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥
𝐶: 𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥
𝐷: 𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑚𝑎𝑡𝑟𝑖𝑥

Problem:

Solution:

Given the following system: 

Set the system on the following state-space form: 

State-space model: 



CEN455: Dr. Nassim Ammour 34

Example-1: State-space Representation

Problem:

Find a state-state representation of the following electrical network if 

the output is 𝑖𝑅 the current through the resistor, (𝑣(𝑡) is the input).

Solution:

The following steps will yield a viable representation of the network in state space.

Step 1: Label all the branch currents in the network (These include 𝑖𝐿, 𝑖𝑅, and 𝑖𝐶 ).

Step 2: Select the state variables (quantities that are differentiated 𝑣𝐶 and 𝑖𝐿, energy-storage elements, the inductor C and the 

capacitor L) and write derivative equations.

Step 3: Express non-state variables (right-hand side: 𝑖𝐶 and 𝑣𝐿) as a linear combinations of the state variables (differentiated 

variables: 𝑣𝐶and 𝑖𝐿) and the input, 𝑣 𝑡 .

Apply Kirchhoff’s voltage and current laws, to obtain 𝑖𝐶 and

𝑣𝐿 in terms of the state variables, 𝑣𝐶 and 𝑖𝐿.

We have 𝑣𝑅 = 𝑣𝐶.

We can have ሶ𝑣𝑐 = ሶ𝑖𝐿.
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Example-1: State-space Representation-contd.

Step 4: Obtain state equations: (by substituting the values and rearranging)

Step 5: Find the output equation:

Final result: Convert into vector-matrix form

ቊ
ሶ𝑥 = 𝐴 𝑥 + 𝐵 𝑢
𝑦 = 𝐶 𝑥 + 𝐷 𝑢

𝑑𝑣𝐶
𝑑𝑡

= −
1

𝑅𝐶
∙ 𝑣𝐶 +

1

𝐶
∙ 𝑖𝐿 + 0 ∙ 𝑣(𝑡)

𝑑𝑖𝐿
𝑑𝑡

= −
1

𝐿
∙ 𝑣𝐶 + 0 ∙ 𝑖𝐿 +

1

𝐿
∙ 𝑣(𝑡)

𝑖𝑅 =
1

𝐿
∙ 𝑣𝐶 + 0 ∙ 𝑖𝐿

output 

equation

State 

equation

Matrix Form

Matrix Form
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Example-2: State-space Representation
(with a dependent source)

Step 1: Label all the branch currents in the network.

Step 2: Select the state variables (energy-storage elements: L and C) 

and write derivative equations (voltage-current relationships).

the state variables (differentiated variables)

Step 3: State equations (we find 𝑣𝐿 and 𝑖𝐶 in terms of the state variables)

PROBLEM: Find the state and output equations for the electrical network shown in Figure.

If the output vector is 𝑦 = 𝑣𝑅2 𝑖𝑅2
𝑇

mesh LCR2

Node 1

(𝑣𝑅1 = 𝑣𝐿)

(2)
(1)1 − 4𝑅2 𝑣𝐿 − 𝑅2𝑖𝐶 = 𝑣𝐶 −

1

𝑅1
𝑣𝐿 − 𝑖𝐶 = 𝑖𝐿 − 𝑖(𝑡)

Node 2
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Example-2: State-space Representation

Step 4: Output equations

Solving (1) and (2) simultaneously for 𝑣𝐿 and 𝑖𝐶 yields

𝑣𝐿 =
1

∆
𝑅2𝑖𝐿 − 𝑣𝐶 − 𝑅2𝑖(𝑡)

−
1

𝑅1
𝑣𝐿 − 𝑖𝐶 = 𝑖𝐿 − 𝑖(𝑡) 𝑖𝐶 = −

1

𝑅1
𝑣𝐿 − 𝑖𝐿 + 𝑖(𝑡)

(1)

1 − 4𝑅2 𝑣𝐿 − 𝑅2(−
1

𝑅1
𝑣𝐿 − 𝑖𝐿 + 𝑖(𝑡)) = 𝑣𝐶

1 − 4𝑅2 +
𝑅2
𝑅1

𝑣𝐿 + 𝑅2𝑖𝐿 − 𝑅2𝑖(𝑡) = 𝑣𝐶 𝑤𝑖𝑡ℎ ∆= − 1 − 4𝑅2 +
𝑅2
𝑅1

and

writing the result in vector-matrix form

vector-matrix form, the output equation is
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Example-3: State-space Representation
(Translational Mechanical System)

For M1:

For M2:

Let,

(acceleration = derivative of velocity)

Select x1, x2, v1, v2 as state variables.

State equations:

matrix form.

ሶ𝑥1
ሶ𝑣1
ሶ𝑥2
ሶ𝑣2

=

0 1

− ൗ𝐾 𝑀1
ൗ𝐾 𝑀1

0 0

− ൗ𝐾 𝑀1
0

0 0

ൗ𝐾 𝑀2
0

0 1

− ൗ𝐾 𝑀1
0

𝑥1
𝑣1
𝑥2
𝑣2

+

0
0
0

ൗ1 𝑀2

𝑓(𝑡)

𝑑𝑥1
𝑑𝑡

= 𝑣1

𝑑𝑥2
𝑑𝑡

= 𝑣2

𝑑2𝑥1
𝑑𝑡2

=
𝑑𝑣1
𝑑𝑡

= ሶ𝑣1

𝑑2𝑥2
𝑑𝑡2

=
𝑑𝑣2
𝑑𝑡

= ሶ𝑣2
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Example-4: State-space Representation

Problem: Find the state-space representation of the electrical network 

shown in the figure. The output is 𝑣0(𝑡).

Solution:

The derivative relations (one for each 

energy-storage element)

Matrix form

ሶ𝑥 =

− ൗ1 𝑅𝐶1
ൗ1 𝐶1

− ൗ1 𝑅𝐶1

− ൗ1 𝐿 0 0

− ൗ1 𝑅𝐶2
0 − ൗ1 𝑅𝐶2

𝑥 +

ൗ1 𝑅𝐶1

ൗ1 𝐿

ൗ1 𝑅𝐶2

𝑣𝑖(𝑡)

state variables: 𝑣𝑐1, 𝑖𝐿, 𝑣𝑐2

𝑥 =

𝑣𝑐1
𝑖𝐿
𝑣𝑐2

State vector state-space representation

𝑣𝐿 = 𝑣𝑖 − 𝑣𝑐1

𝑖𝑐1 = 𝑖𝐿 + 𝑖𝑅 = 𝑖𝐿 +
𝑣𝑅
𝑅

= 𝑖𝐿 +
1

𝑅
𝑣𝐿 − 𝑣𝑐2

𝑣𝐿 = − 𝑣𝑐1 + 0 𝑖𝐿 + 0 𝑣𝑐2 + 𝑣𝑖

𝑖𝑐1 = −
1

𝑅
𝑣𝑐1 + 𝑖𝐿 −

1

𝑅
𝑣𝑐2 +

1

𝑅
𝑣𝑖

𝑖𝑐2 = −
1

𝑅
𝑣𝑐1 + 0 𝑖𝐿 −

1

𝑅
𝑣𝑐2 +

1

𝑅
𝑣𝑖

𝑖𝑐2 = 𝑖𝑅 =
1

𝑅
𝑣𝐿 − 𝑣𝑐2 =

1

𝑅
(𝑣𝑖 − 𝑣𝑐1 − 𝑣𝑐2)

𝑖𝑐1 𝑖𝑅

𝑖𝐿

𝑣𝐿
𝑣𝑐2

𝑣𝑐1
𝑖𝑐2

𝑣𝑅

Mesh 1

Mesh 2

Mesh 2, Mesh 1
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Converting a Transfer Function to State Space

Phase variables: A set of state variables where each state variable is defined to be the derivative of the previous state variable.

Consider a differential equation,

Choose the output, y(t), and its derivatives as the state variables, 𝑥𝑖 .
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matrix form,
Converting a Transfer Function to State Space

ሶ𝑥1
ሶ𝑥2
ሶ𝑥3
⋮
ሶ𝑥𝑛−1
ሶ𝑥𝑛

=

𝑥1
𝑥2
𝑥3
⋮

𝑥𝑛−1
𝑥𝑛

+

0
0
0
⋮
0
𝑏0

𝑦 = 1 0 0 … 0

𝑥1
𝑥2
𝑥3
⋮

𝑥𝑛−1
𝑥𝑛

output

PROBLEM: Find the state-space representation in phase-variable form for the transfer function

Step 1 Find the associated differential equation

inverse Laplace transform,

Step 2 Select the state variables.

the state equations. matrix form,
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Block Diagram Reduction
• More complicated systems are represented by the interconnection of many subsystems.
• In order to calculate the transfer function, we want to represent multiple subsystems as a 

single block.
• A subsystem is represented as a block with an input, an output, and a transfer function.

block diagram

Signals

Pickoff point

Summing junction
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Cascade Form
equivalent

transfer function

Parallel Form

equivalent

transfer function

Feedback Form

equivalent

transfer function

𝐸 𝑠 = 𝑅 𝑠 ∓ 𝐶 𝑠 𝐻(𝑠)But since

𝐶 𝑠 = 𝐺 𝑠 𝑅 𝑠 ∓ 𝐶 𝑠 𝐻(𝑠)

𝐶 𝑠 = 𝐺 𝑠 𝐸(𝑠)

𝐶 𝑠 = 𝐺 𝑠 𝑅 𝑠 ∓ 𝐺 𝑠 𝐶 𝑠 𝐻(𝑠)

1 ± 𝐺 𝑠 𝐻(𝑠) 𝐶 𝑠 = 𝐺 𝑠 𝑅 𝑠

𝐶 𝑠

𝑅 𝑠
=

𝐺 𝑠

1 ± 𝐺 𝑠 𝐻(𝑠)

equivalent

transfer function

Reduction of Multiple Subsystems2
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Reduction of Multiple Subsystems3

Moving Blocks to Create Familiar Forms
• Familiar forms (cascade, parallel, and feedback) are not always apparent in a block diagram

Transfer function is moved 
right past a summing junction

Transfer function is moved left 
past a summing junction

Block diagram algebra for pickoff pointBlock diagram algebra for summing junction

Equivalent forms for moving a block to 
the left past a pickoff point.

Equivalent forms for moving a block to 
the right past a pickoff point.

𝐺 𝑠 [𝑅 𝑠 + 𝑋 𝑠 ])

𝑅 𝑠 𝐺 𝑠 )

𝑅 𝑠 𝐺(𝑠))

𝑋 𝑠 𝐺(𝑠)

𝑅 𝑠 𝐺 𝑠 + 𝑋(𝑠) 𝑅 𝑠 𝐺 𝑠 + 𝑋(𝑠)

𝑋(𝑠)/𝐺(𝑠)

𝑅 𝑠 + 𝑋 𝑠 ) 𝐺 𝑠 [𝑅 𝑠 + 𝑋 𝑠 ])
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Example
Problem:

Solution:

Reduce the system shown in Figure 

to a single transfer function.

The three summing 

junctions can be 

collapsed into a single 

summing junction
the three feedback functions, 

𝐻1 𝑠 , 𝐻2 𝑠 , 𝑎𝑛𝑑 𝐻3 𝑠 are

connected in parallel.

G2 𝑠 𝑎𝑛𝑑 G3 𝑠 are

connected in cascade.

the feedback system is reduced

and multiplied by G1 𝑠


