Mathematical Models of Systems

- Development of mathematical models from schematics of physical systems.

Transfer functions in the frequency domain,

- Two Methods:

State equations in the time domain.
a. Block diagram representation of a system;
(a)
b. block diagram Representation of an interconnection of subsystems

(b)

Note: The input, $r(t)$, stands for reference input. The output, $c(t)$, stands for controlled variable.

- Transfer function (mathematical function), is inside each block.

Modeling in Frequency Domain Laplace Transform Review

- A system represented by a differential equation is difficult to model as a block diagram.
- A differential equation can describe the relationship between the input and output of a system.
- By using Laplace transform we can represent the input, output, and system as separate entities.

$$
A(s) Y(s)=B(s) U(s)
$$

Laplace transform can be defined as:

$$
\mathscr{L}[f(t)]=F(s)=\int_{0-}^{\infty} f(t) e^{-s t} d t
$$

Where $s=\sigma+j \omega$, a complex variable

Inverse Laplace transform:

$$
\begin{aligned}
& \mathscr{L}^{-1}[F(s)]=\frac{1}{2 \pi j} \int_{\sigma-j \omega}^{\sigma+j \omega} F(s) e^{s t} d s=f(t) u(t) \\
& \text { Where, } \begin{aligned}
u(t) & =1 \quad t>0 \\
& =0 \quad t<0
\end{aligned} \quad \begin{array}{l}
\text { Multiplication of } f(t) \text { by } u(t) \\
\text { yields a time function that } \\
\text { is zero for } t<0 .
\end{array}
\end{aligned}
$$

Laplace Transform Table

Table 2.1
Laplace transform table

Item no.	$\boldsymbol{f}(\mathbf{t})$	$\boldsymbol{F}(\mathbf{s})$
1.	$\delta(t)$	1
2.	$u(t)$	$\frac{1}{s}$
3.	$t u(t)$	$\frac{1}{s^{2}}$
4.	$t^{n} u(t)$	$\frac{n!}{s^{n+1}}$
5.	$e^{-a t} u(t)$	$\frac{1}{s+a}$
6.	$\sin \omega t u(t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
7.	$\cos \omega t u(t)$	$\frac{s}{s^{2}+\omega^{2}}$

Problem: Find the Laplace transform of

$$
f(t)=A e^{-a t} u(t)
$$

Solution:

$$
\begin{aligned}
F(s) & =\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} A e^{-a t} e^{-s t} d t \\
& =A \int_{0}^{\infty} e^{-(s+a) t} d t=-\left.\frac{A}{s+a} e^{-(s+a) t}\right|_{t-0} ^{\infty} \\
& =\frac{A}{s+a}
\end{aligned}
$$

Laplace Transform Theorems

Table 2.2

Item no.	Theorem	Name
1.	$\mathscr{L}[f(t)]=F(s)=\int_{0-}^{\infty} f(t) e^{-s t} d t$	Definition
2.	$\mathscr{L}[k f(t)] \quad=k F(s)$	Linearity theorem
3.	$\mathscr{L}\left[f_{1}(t)+f_{2}(t)\right]=F_{1}(s)+F_{2}(s)$	Linearity theorem
4.	$\mathscr{L}\left[e^{-a t} f(t)\right] \quad=F(s+a)$	Frequency shift theorem
5.	$\mathscr{L}[f(t-T)] \quad=e^{-s T} F(s)$	Time shift theorem
6.	$\mathscr{L}[f(a t)] \quad=\frac{1}{a} F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{d f}{d t}\right] \quad=s F(s)-f(0-)$	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^{2} f}{d t^{2}}\right] \quad=s^{2} F(s)-s f(0-)-f^{\prime}(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[\frac{d^{n} f}{d d^{n}}\right] \quad=s^{n} F(s)-\sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{\prime} f(\tau) d \tau\right]=\frac{F(s)}{s}$	Integration theorem
11.	$f(\infty) \quad=\lim _{s \rightarrow 0} s F(s)$	Final value theorem ${ }^{1}$
12.	$f(0+) \quad=\lim _{s \rightarrow \infty} s F(s)$	Initial value theorem ${ }^{2}$

[^0]
Inverse Laplace Transform

Problem: Find inverse Laplace Transform of

$$
F_{1}(s)=\frac{1}{(s+3)^{2}}
$$

Solution:
From item 3 and 5 of Table 2.1,

$$
f_{1}(t)=e^{-3 t} t u(t)
$$

Frequency shift theorem item 4 of Table 2.2,

$$
\mathscr{L}\left[\mathrm{e}^{-a t} f(t)\right]=F(s+a) .
$$

Inverse Laplace: Partial-Fraction Expansion

A partial-fraction expansion: transform of a complicated function to a sum of simpler terms for which we know the Laplace transform of each term.

Case 1. (Roots of the Denominator of $\mathrm{F}(\mathrm{s})$ Are Real and Distinct)

Problem: $\quad F_{1}(s)=\frac{s^{3}+4 s^{2}+6 s+5}{s^{2}+3 s+2}=\frac{N(s)}{D(s)}$
The order of $\mathrm{N}(\mathrm{s})>$ order of $\mathrm{D}(\mathrm{s})$ we must perform the division until we obtain a remainder whose numerator is of order less than its denominator
$s+1$

$$
s ^ { 2 } + 3 s + 2 \longdiv { s ^ { 3 } + 4 s ^ { 2 } + 6 s + 5 }
$$

Partial-Fraction Expansion

$$
\frac{-\left(s^{3}+3 s^{2}+2 s\right)}{s^{2}+4 s+5}
$$

$$
\frac{-\left(s^{2}+3 s+2\right)}{s+3}
$$

Taking the inverse
$\xrightarrow[\text { (Table 2.2 Item 7) }]{\text { Laplace transform, }} f_{1}(t)=\frac{d \delta(t)}{d t}+\delta(t)+\mathfrak{S}^{-1}\left[\frac{s+3}{(s+1)(s+2)}\right]$

To find K_{1}, multiply by ($s+1$). Thus

$$
\frac{s+3}{(s+2)}=K_{1}+\frac{(s+1) K_{2}}{(s+2)}
$$

Letting $s=-1, K_{1}=2$

$$
f(t)=\left(2 e^{-t}-2 e^{-2 t}\right) u(t)
$$

Final solution: $f_{1}(t)=\frac{d \delta(t)}{d t}+\delta(t)+\left(2 e^{-t}-2 e^{-2 t}\right) u(t)$

Laplace Transform Solution of a Differential Equation

Problem: Solve for $y(t)$, if all initial conditions are zero.

$$
\frac{d^{2} y}{d t^{2}}+12 \frac{d y}{d t}+32 y=32 u(t)
$$

Solution: The Laplace transform is,
$\xrightarrow{\text { (Table } 2.2 \text { Item 8) }} s^{2} Y(s)+12 s Y(s)+32 Y(s)=\frac{32}{s}$

$$
\begin{gathered}
Y(s)=\frac{32}{s\left(s^{2}+12 s+32\right)}=\frac{32}{s(s+4)(s+8)} \\
=\frac{K_{1}}{s}+\frac{K_{2}}{(s+4)}+\frac{K_{3}}{(s+8)}
\end{gathered}
$$

Taking inverse Laplace transform, we get

$$
\begin{aligned}
& K_{1}=\left.\frac{32}{(s+4)(s+8)}\right|_{s \rightarrow 0}=1 \\
& K_{2}=\left.\frac{32}{s(s+8)}\right|_{s \rightarrow-4}=-2 \\
& K_{3}=\left.\frac{32}{s(s+4)}\right|_{s \rightarrow-s}=1
\end{aligned}
$$

$$
y(t)=\left(1-2 e^{-4 t}+e^{-8 t}\right) u(t)
$$

Hence, $Y(s)=\frac{1}{s}-\frac{2}{(s+4)}+\frac{1}{(s+8)}$

Inverse Laplace: Partial-Fraction Expansion

Case 2. (Roots of the Denominator of F(s) Are Real and Repeated)
Problem: Find inverse Laplace transform of

$$
\begin{equation*}
F(s)=\frac{2}{(s+1)(s+2)^{2}} \tag{1}
\end{equation*}
$$

Solution:

We can write the partial-fraction expansion as a sum of terms
reduced multiplicity

$$
\begin{aligned}
& F(s)=\frac{K_{1}}{(s+1)}+\frac{K_{2}}{(s+2)^{2}}+\frac{K_{3}}{(s+2)} \\
& K_{1}=\left.\frac{2}{(s+2)^{2}}\right|_{s \rightarrow-1}=2
\end{aligned}
$$

To find K_{2}, multiply (1) $=(2)$ by $(s+2)^{2}$
$\frac{2}{(s+1)}=(s+2)^{2} \frac{K_{1}}{(s+1)}+K_{2}+(s+2) K_{3}$
Letting $s \rightarrow-2$, we obtain $K_{2}=-2$

To find K_{3}, differentiate (3) w.r.t. s:

$$
\frac{-2}{(s+1)^{2}}=\frac{(s+2) s}{(s+1)^{2}} K_{1}+K_{3}
$$

Letting $s \rightarrow-2$, we obtain $K_{3}=-2$
Therefore, inverse Laplace transform is:

$$
f(t)=2 e^{-t}-2 t e^{-2 t}-2 e^{-2 t}
$$

For repeated roots with multiplicity r, we have

$$
\begin{gathered}
F(s)=\frac{K_{1}}{\left(s+p_{1}\right)^{r}}+\frac{K_{2}}{\left(s+p_{1}\right)^{r-1}}+\cdots+\frac{K_{r}}{\left(s+p_{1}\right)} \\
K_{i}=\left.\frac{1}{(i-1)!} \frac{d^{i-1} F_{1}(s)}{d s^{i-1}}\right|_{s \rightarrow-p_{1}} i=1,2, \ldots, r \\
F_{1}(s)=\left(s+p_{1}\right)^{r} F(s)
\end{gathered}
$$

Inverse Laplace: Partial-Fraction Expansion

Case 3. (Roots of the Denominator of $\mathrm{F}(\mathrm{s})$ Are Complex or Imaginary)

Problem: Find inverse Laplace transform of

$$
F(s)=\frac{3}{s\left(s^{2}+2 s+5\right)}
$$

Solution:

This function can be expanded in the following form:

$$
\begin{equation*}
\frac{3}{s\left(s^{2}+2 s+5\right)}=\frac{K_{1}}{s}+\frac{K_{2} s+K_{3}}{s^{2}+2 s+5} \tag{1}
\end{equation*}
$$

K_{1} is found in the usual way: $\left.\frac{3}{s^{2}+2 s+5}\right|_{s \rightarrow 0}=\frac{3}{5} \equiv K_{1}$ To find K_{2} and K_{3} :

Multiply (1) by $s\left(s^{2}+2 s+5\right)$, and put $K_{1}=3 / 5$

$$
\begin{aligned}
& \Rightarrow 3=\frac{3}{5}\left(s^{2}+2 s+5\right)+K_{2} s^{2}+K_{3} s \\
& \Rightarrow 3=\left(K_{2}+\frac{3}{5}\right) s^{2}+\left(K_{3}+\frac{6}{5}\right) s+3
\end{aligned}
$$

Balancing coefficients(matching)
$K_{2}+\frac{3}{5}=0$

$$
\begin{aligned}
& \Im\left[A e^{-a t} \cos \omega t\right]=\frac{A(s+a)}{(s+a)^{2}+\omega^{2}} \\
& \Im\left[B e^{-a t} \sin \omega t\right]=\frac{B \omega}{(s+a)^{2}+\omega^{2}}
\end{aligned}
$$

Adding, $\Im\left[A e^{-a t} \cos \omega t+B e^{-a t} \sin \omega t\right]=\frac{A(s+a)+B \omega}{(s+a)^{2}+\omega^{2}}$

$$
\Rightarrow F(s)=\frac{3 / 5}{s}-\frac{3}{5} \frac{(s+1)+(1 / 2)(2)}{(s+1)^{2}+2^{2}}
$$

$K_{3}+\frac{6}{5}=0$

$$
K_{2}=-\frac{3}{5}, \text { and } K_{3}=-\frac{6}{5}
$$

Hence,

$$
F(s)=\frac{3 / 5}{s}-\frac{3}{5} \frac{s+2}{s^{2}+2 s+5}
$$

We have, $s^{2}+2 s+5=s^{2}+2 s+1+4=(s+1)^{2}+2^{2}$

$$
a=1 \text { and } \omega=2
$$

$$
f(t)=\frac{3}{5}-\frac{3}{5} e^{-t}\left(\cos 2 t+\frac{1}{2} \sin 2 t\right)
$$

Transfer Function

- A Transfer Function is the ratio of the output of a system to the input of a system. It allows us to algebraically combine mathematical representations of subsystems to yield a total system representation.
$\xrightarrow[\text { input }]{R(s)} \xrightarrow[G(s)]{\substack{\text { output }}} \underset{\rightarrow(s)}{C(s)}$
- General $\mathrm{n}^{\text {th }}$ order, linear time-invariant differential equation:

$$
a_{n} \frac{d^{n} c(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} c(t)}{d t^{n-1}}+\ldots+a_{0} c(t)=b_{m} \frac{d^{m} r(t)}{d t^{m}}+b_{m-1} \frac{d^{m-1} r(t)}{d t^{m-1}}+\ldots+b_{0} r(t) \quad \text { c: output, r: input }
$$

Taking Laplace transform,

$$
a_{n} s^{n} C(s)+a_{n-1} s^{n-1} C(s)+\ldots+a_{0} C(s)+[\text { Initial condition is zero }]
$$

$$
=b_{m} s^{m} R(s)+b_{m-1} s^{m-1} R(s)+\ldots+b_{0} R(s)+[\text { Initial condition is zero }]
$$

Transfer function: $\frac{C(s)}{R(s)}=G(s)=\frac{\left(b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{0}\right)}{\left(a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}\right)}$

$$
C(s)=G(s) R(s)
$$

Block diagram of a transfer function

Transfer Function for a Differential Equation

Problem 1: Find the transfer function represented by

$$
\frac{d c(t)}{d t}+2 c(t)=r(t)
$$

Solution:

Taking Laplace transform and assuming zero initial conditions, we have

$$
s C(s)+2 C(s)=R(s)
$$

Transfer function, $\mathrm{G}(\mathrm{s}), \quad \Rightarrow G(s)=\frac{C(s)}{R(s)}=\frac{1}{s+2}$
Problem 2: Find the transfer function represented by $\quad \frac{d^{3} c}{d t^{3}}+3 \frac{d^{2} c}{d t^{2}}+7 \frac{d c}{d t}+5 c=\frac{d^{2} r}{d t^{2}}+4 \frac{d r}{d t}+3 r$.
Solution:

$$
\begin{aligned}
& s^{3} C(s)+3 s^{2} C(s)+7 s C(s)+5 C(s)=s^{2} R(s)+4 s R(s)+3 R(s) \\
\Rightarrow & G(s)=\frac{C(s)}{R(s)}=\frac{s^{2}+4 s+3}{s^{3}+3 s^{2}+7 s+5}
\end{aligned}
$$

Problem Solving

Problem: Find the ramp response for a system whose transfer function is

$$
G(s)=\frac{s}{(s+4)(s+8)}
$$

Solution:

$$
\begin{aligned}
& C(s)=R(s) G(s)=\frac{1}{s^{2}} \times \frac{s}{(s+4)(s+8)}=\frac{1}{s(s+4)(s+8)} \\
& \Rightarrow C(s)=\frac{A}{s}+\frac{B}{(s+4)}+\frac{C}{(s+8)} \\
& A=\left.\frac{1}{(s+4)(s+8)}\right|_{s \rightarrow 0}=\frac{1}{32} \\
& B=\left.\frac{1}{s(s+8)}\right|_{s \rightarrow-4}=-\frac{1}{16} \\
& C=\left.\frac{1}{s(s+4)}\right|_{s \rightarrow-8}=\frac{1}{32} \quad \text { Hence, } \\
& \quad C(t)=\frac{1}{32}-\frac{1}{16} e^{-4 t}+\frac{1}{32} e^{-8 t}
\end{aligned}
$$

Electric Network Transfer Functions

Apply the transfer function to the mathematical modeling of electronic circuits including passive networks and O-Amp circuits.

Table 2.3
Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

Capacitor	$v(t)=\frac{1}{C} \int_{0}^{t} i(\tau) d \tau$	$i(t)=C \frac{d v(t)}{d t}$	$v(t)=\frac{1}{C} q(t)$	$\frac{1}{C s}$	Cs
	$v(t)=R i(t)$	$i(t)=\frac{1}{R} v(t)$	$v(t)=R \frac{d q(t)}{d t}$	R	$\frac{1}{R}=G$
0000 Inductor	$v(t)=L \frac{d i(t)}{d t}$	$i(t)=\frac{1}{L} \int_{0}^{t} v(\tau) d \tau$	$v(t)=L \frac{d^{2} q(t)}{d t^{2}}$	Ls	$\frac{1}{L s}$

Note: The following set of symbols and units is used throughout this book: $v(t)=\mathrm{V}$ (volts), $i(t)=\mathrm{A}$ (amps), $q(t)=\mathrm{Q}$ (coulombs), $C=\mathrm{F}$ (farads), $R=\Omega$ (ohms), $G=\mathbb{Z}$ (mhos), $L=\mathrm{H}$ (henries),

Transfer Function: Single Loop

Problem: \quad Find the transfer function relating capacitor voltage, $V_{c}(s)$, to input voltage, $V(s)$.

RLC network
Summing the voltages around the loop,

$$
L \frac{d i(t)}{d t}+\operatorname{Ri}(t)+\frac{1}{C} \int_{0}^{t} i(\tau) d \tau=V(t)
$$

take the Laplace transform

$$
\begin{array}{ccc}
V_{C}(s)=\frac{1}{C s} I(s) & V_{L}(s)=L s I(s) & V_{R}(s)=R I(s) \\
\text { Capacitor } & \text { Inductor } & \text { Resistor }
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow V_{c}(s)=\frac{V(s)}{L s+R+\frac{1}{C s}} \times \frac{1}{C s} \quad \begin{array}{c}
\text { Laplace-transformed } \\
\text { network }
\end{array} \\
& \Rightarrow \frac{V_{c}(s)}{V(s)}=\frac{1}{L s+R+\frac{1}{C s}} \times \frac{1}{C s}=\frac{C s}{s^{2} L C+s R C+1} \times \frac{1}{C s}
\end{aligned}
$$

$$
\left(L s+R+\frac{1}{C s}\right) I(s)=V(s) \Rightarrow \frac{I(s)}{V(s)}=\frac{1}{L s+R+\frac{1}{C s}}
$$

We know, $V_{C}(s)=I(s) \frac{1}{C s} \Rightarrow \frac{V_{C}(s)}{V(s)}=\frac{I(s)}{V(s)} \times \frac{1}{C s}$
Laplace-transform

$$
\begin{aligned}
& =\frac{1}{s^{2} L C+s R C+1} \\
& =\frac{1 / L C}{s^{2}+s \frac{R}{L}+\frac{1}{L C}}
\end{aligned}
$$

Transfer functions also can be obtained using Kirchhoff's current law and summing currents flowing from nodes. currents leaving the node are positive and currents entering the node are negative.

$$
\begin{aligned}
& \sum I_{\text {in }}=\sum I_{\text {out }} \Rightarrow I_{c}(s)=I_{R L}(s) \quad \underbrace{\text { same current }} \\
& \Rightarrow I_{c}(s)-I_{R L}(s)=0 \Rightarrow \frac{V_{c}}{Z_{c}}-\frac{V_{R L}}{Z_{R L}}=0 \\
& \Rightarrow \frac{V_{C}(s)}{\frac{1}{C s}}+\frac{V_{c}(s)-V(s)}{R+L s}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow V_{c}(s)\left(C s+\frac{1}{R+L s}\right)=\frac{V(s)}{R+L s} \\
& \Rightarrow \frac{V_{c}(s)}{V(s)}=\frac{1}{s^{2} L C+s R C+1}
\end{aligned}
$$

$$
=\frac{1 / L C}{s^{2}+s \frac{R}{L}+\frac{1}{L C}}
$$

Transfer Function: Single Loop via Voltage Division

Voltage across capacitor is some proportion of the input voltage.

$$
\begin{align*}
& V_{i}=\left(Z_{1}+Z_{2}\right) i(t) \tag{1}\\
& V_{o}=Z_{2} i(t) \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& V_{C}(s)=\frac{1 / C s}{\left(L s+R+\frac{1}{C s}\right)} V(s) \\
& \Rightarrow \frac{V_{c}(s)}{V(s)}=\frac{1 / L C}{s^{2}+s \frac{R}{L}+\frac{1}{L C}}
\end{aligned}
$$

$$
\frac{(2)}{(1)} \longmapsto \frac{V_{o}}{V_{i}}=\frac{Z_{2}}{\left(Z_{1}+Z_{2}\right)}
$$

Which one is the easiest? Method 1 , method 2, or method 3?

Complex Circuits via Nodal Analysis ${ }_{1}$

Complex electrical networks (those with multiple loops and nodes). We use nodal analysis to find the transfer function $\frac{V_{C}(s)}{V(s)}$

(a)

Expressing resistances as conductances, $\quad \mathrm{G}=1 / \mathrm{R}$

Complex Circuits - Mesh Equations via Inspection 2

For Mesh 2:-[$\left[\begin{array}{c}\text { Sum of } \\ \text { impedances } \\ \text { common to } \\ \text { Mesh } 1 \text { and mesh2 }\end{array}\right] \times I_{1}(s)+\left[\begin{array}{c}\text { Sum of } \\ \text { impedances } \\ \text { around } \\ \text { Mesh 2 }\end{array}\right] \times I_{2}(s)-\left[\begin{array}{c}\text { Sum of } \\ \text { impedances } \\ \text { common to } \\ \text { Mesh } 2 \text { and mesh3 }\end{array}\right] \times I_{3}(s)=\left[\begin{array}{c}\text { Sum of applied } \\ \text { voltages around } \\ \text { Mesh 2 }\end{array}\right]$
For Mesh 3:-[$\left[\begin{array}{c}\text { Sum of } \\ \text { impedances } \\ \text { common to } \\ \text { Mesh } 1 \text { and mesh3 }\end{array}\right] \times I_{1}(s)-\left[\begin{array}{c}\text { Sum of } \\ \text { impedances } \\ \text { common to } \\ \text { Mesh } 2 \text { and mesh3 }\end{array}\right] \times I_{2}(s)+\left[\begin{array}{c}\text { Sum of } \\ \text { impedances } \\ \text { around } \\ \text { Mesh 3 }\end{array}\right] \times I_{3}(s)=\left[\begin{array}{c}\text { Sum of applied } \\ \text { voltages around } \\ \text { Mesh 3 }\end{array}\right] \quad \frac{1}{S}$
Similarly, Meshes 3, we obtain

$$
\begin{aligned}
& \text { For Mesh 1: }+(2 s+2) I_{1}(s)-(2 s+1) I_{2}(s)-I_{3}(s)=V(s) \\
& \text { For Mesh 2: }-(2 s+1) I_{1}(s)+(9 s+1) I_{2}(s)-4 s I_{3}(s)=0
\end{aligned}
$$

$$
\text { For Mesh 3: }-I_{1}(s)-4 s I_{2}(s)+\left(4 s+1+\frac{1}{s}\right) I_{3}(s)=0
$$

which can be solved simultaneously for any desired transfer function, for example, $I_{3}(s) / V(s)$

Operational Amplifier

An operational amplifier is an electronic amplifier used as a basic building block to implement transfer functions. It has the following characteristics:

1. Differential input, $v_{2}(t)-v_{1}(t)$
2. High input impedance, $Z_{i}=\infty$ (ideal)
3. Low output impedance, $Z_{0}=0$ (ideal)
4. High constant gain amplification, $A=\infty$ (ideal)
a. Operational amplifier;
b. schematic for an inverting operational amplifier;
c. Inverting operational amplifier configured for transfer

The output, $v_{0}(t)$, is given by: $v_{0}(t)=A\left(v_{2}(t)-v_{1}(t)\right)$ function realization. Typically, the amplifier gain, A, is omitted.
$I_{1}(s)=-I_{2}(s), \quad$ as $I_{a}(s)=0$, because of high input impedance

$V_{i}(s)$	$=Z_{1}(\mathrm{~s}) I_{1}(s)$
$V_{o}(s)$	$=Z_{2}(\mathrm{~s}) I_{2}(s)$
$I_{1}(s)$	$=-I_{2}(s)$

(c)

Problem Solving
 Inverting Operational Amplifier

Problem: Find the transfer function, $\frac{V_{0}(s)}{V_{i}(s)}$, for the circuit below.

Solution:

For parallel components, $\mathrm{Z}_{1}(s)$ is the reciprocal of the sum of the admittances.

$$
Z_{1}(s)=\frac{1}{C_{1} s+\frac{1}{R_{1}}}=\frac{1}{5.6 \times 10^{-6} s+\frac{1}{360 \times 10^{3}}}
$$

For serial components, $\mathrm{Z}_{2}(s)$ is the sum of the impedances.

$$
Z_{2}(s)=R_{2}+\frac{1}{C_{2} s}=220 \times 10^{3}+\frac{10^{7}}{s}
$$

Non-inverting Operational Amplifier

Using voltage division,

$$
\begin{aligned}
& V_{0}(s)=\left[Z_{1}(\mathrm{~s})+Z_{2}(\mathrm{~s})\right] I(s) \\
& V_{1}(s)=Z_{1}(\mathrm{~s}) I(s)
\end{aligned} \quad \Rightarrow \Rightarrow V_{1}(s)=\frac{Z_{1}(s)}{Z_{1}(s)+Z_{2}(s)} V_{o}(s)
$$

We have: $V_{o}(s)=A\left(V_{i}(s)-V_{1}(s)\right) \Rightarrow V_{0}(s)=A\left[V_{i}(s)-\frac{Z_{1}(\mathrm{~s})}{Z_{1}(\mathrm{~s})+Z_{2}(\mathrm{~s})} V_{o}(s)\right]$
$\Rightarrow V_{0}(s)\left[1+A \frac{Z_{1}(\mathrm{~s})}{Z_{1}(\mathrm{~s})+Z_{2}(\mathrm{~s})}\right]=A V_{i}(s)$

$\Rightarrow \frac{V_{o}(s)}{V_{i}(s)}=\frac{A}{1+A Z_{1}(s) /\left(Z_{1}(s)+Z_{2}(s)\right)}$
For large A, we disregard '1' in the denominator. $\quad \frac{V_{0}(s)}{V_{i}(s)}=\frac{Z_{1}(s)+Z_{2}(s)}{Z_{1}(s)}$

Problem Solving

Non-Inverting Operational Amplifier

PROBLEM: Find the transfer function, $V_{o}(s) / V i(s)$, for the Non-inverting operational amplifier circuit

SOLUTION:

We find each of the impedance functions,
$Z_{1}(s)=R_{1}+\frac{1}{C_{1} s}=\frac{R_{1} C_{1} s+1}{C_{1} s} \quad$ and $\quad Z_{2}(s)=\frac{1}{C_{2} s+\frac{1}{R_{2}}}=\frac{R_{2}}{R_{2} C_{2} s+1}$
Now use the following equation: $\frac{V_{o}(s)}{V_{i}(s)}=\frac{Z_{1}(s)+Z_{2}(s)}{Z_{1}(s)}$
$\frac{V_{0}(s)}{V_{1}(s)}=\left[\frac{R_{1} C_{1} s+1}{C_{1} s}+\frac{R_{2}}{R_{2} C_{2} s+1}\right] \frac{C_{1} s}{R_{1} C_{1} s+1}=1+\frac{R_{2} C_{1} s}{\left(R_{2} C_{2} s+1\right)\left(R_{1} C_{1} s+1\right)}$
$\Rightarrow \quad \frac{V_{0}(s)}{V_{1}(s)}=1+\frac{R_{2} C_{1} s}{R_{1} R_{2} C_{1} C_{2} s^{2}+R_{2} C_{2} s+R_{1} C_{1} s+1}$

Substituting yields $\frac{V_{o}(s)}{V_{i}(s)}=\frac{C_{2} C_{1} R_{2} R_{1} s^{2}+\left(C_{2} R_{2}+C_{1} R_{2}+C_{1} R_{1}\right) s+1}{C_{2} C_{1} R_{2} R_{1} s^{2}+\left(C_{2} R_{2}+C_{1} R_{1}\right) s+1}$

Translational Mechanical System Transfer Functions

Mechanical systems (like electrical networks) have three passive linear components: Spring and the mass (energy-storage elements); and viscous damper (dissipates energy).

Component	Force- velocity	Force- displacement	Impedance $Z_{M}(s)=F(s) / X(s)$

Table 2.4

Force-velocity, force-displacement, and impedance translational relationships
for springs, viscous dampers, and mass

$$
K
$$

$$
f(t)=f_{v} \frac{d x(t)}{d t}
$$

$$
f_{v} s
$$

$f_{v} s$

$$
f(t)=f_{v} v(t)
$$

$$
f(t)=M \frac{d v(t)}{d t} \quad f(t)=M \frac{d^{2} x(t)}{d t^{2}}
$$

f_{V} : Coefficient of viscous friction

$$
M s^{2}
$$

M: Coefficient of mass

Note: The following set of symbols and units is used throughout this book: $f(t)=\mathrm{N}$ (newtons), $x(t)=\mathrm{m}$ (meters), $v(t)=\mathrm{m} / \mathrm{s}$ (meters/second), $K=\mathrm{N} / \mathrm{m}$ (newtons/meter), $f_{v}=$ $\mathrm{N}-\mathrm{s} / \mathrm{m}$ (newton-seconds/meter), $M=\mathrm{kg}$ (kilograms $=$ newton-seconds ${ }^{2} /$ meter).

Transfer Functions: One Degree of Freedom

Find the transfer function, $X(s) / F(s)$, for the system

- All the forces impede (obstruct and block) the motion and act to oppose the applied force.

Free-body diagram of mass, spring, and damper system;

Sum of impedances $\times X(s)=$ Sum of applied forces (zero initial conditions)

$$
\left(K+f_{v} s+M s^{2}\right) \times X(s)=F(s)
$$

Transformed free body diagram

Mass, spring, and damper system

- All the forces impede (obstruct and
Differential equation of motion (Newton's law)
$M \frac{d^{2} x(t)}{d t^{2}}+f_{v} \frac{d x(t)}{d t}+K x(t)=f(t)$
- All the forces impede (obstruct and b
Differential equation of motion (Newton's law)
$M \frac{d^{2} x(t)}{d t^{2}}+f_{v} \frac{d x(t)}{d t}+K x(t)=f(t)$

Solving for the transfer function yields

$$
G(s)=\frac{X(s)}{F(s)}=\frac{1}{M s^{2}+f_{v} s+K}
$$

Transfer Functions: Two Degrees of Freedom

Number of differential equations required to describe the system is equal to the number of linearly independent motions (degrees of freedom).

- Find the transfer function, $X_{2}(s) / F(s)$, for the system

Two-degrees-of-freedom translational mechanical system
Two-degrees-of-freedom : since Each mass can be moved in the horizontal direction while the other is held still.

The Laplace transform of the equation of motion of M1

$$
\begin{align*}
& {\left[M_{1} s^{2}+\left(f_{v 1}+f_{v 3}\right) s+\left(K_{1}+K_{2}\right)\right] X_{1}(s)-\left(f_{v 3} s+K_{2}\right) X_{2}(s)=F(s)} \\
& A X_{1}(s)-B X_{2}(s)=F \tag{1}
\end{align*}
$$

a. Forces on M1 due only to motion of M1

(a)
(b)

(c)

Transfer Functions: Two Degrees of Freedom Continued

The Laplace transform of the equation of motion of M2
a. Forces on M_{2} due only to motion of M_{2};

$$
\begin{array}{cc}
-\left(f_{v 3} s+K_{2}\right) X_{1}(s)+\left[M_{2} s^{2}+\left(f_{v 2}+f_{v 3}\right) s+\left(K_{2}+K_{3}\right)\right] X_{2}(s)=0 \\
-C X_{1}(s)+D X_{2}(s)=0 & X_{1}(s)=\frac{D}{C} X_{2}(s)(2) \\
\stackrel{(2) \text { in }(1)}{ } A \frac{D}{C} X_{2}(s)-B X_{2}(s)=F & \square \frac{X_{2}(s)}{F(s)}=\frac{C}{A D-C B}
\end{array}
$$

Transfer function: $\frac{X_{2}(s)}{F(s)}=G(s)=\frac{\left(f_{v s} s+K_{2}\right)}{\Delta}$ where

$$
\Delta=\left|\begin{array}{cc}
{\left[M_{1} s^{2}+\left(f_{v_{1}}+f_{v_{3}}\right) s+\left(K_{1}+K_{2}\right)\right]} & -\left(f_{v_{3}} s+K_{2}\right) \\
-\left(f_{v_{3}} s+K_{2}\right) & {\left[M_{2} s^{2}+\left(f_{v_{2}}+f_{v_{3}}\right) s+\left(K_{2}+K_{3}\right)\right]}
\end{array}\right|
$$

(b)
hold M2 and move M1

Transfer Functions:
 Three Degrees of Freedom

- Write, the equations of motion for the mechanical network
- The system has three degrees of freedom, since each of the three masses can be moved independently while the others are held still.

- The form of the equations will be similar to electrical mesh equations

For M1: $\quad\left[\begin{array}{c}\text { Sum of } \\ \text { impedances } \\ \text { connected } \\ \text { to the motion } \\ \text { at } \mathrm{x}_{1}\end{array}\right] \mathrm{X}_{1}(s)-\left[\begin{array}{c}\text { Sum of } \\ \text { impedances } \\ \text { between } \\ \mathrm{x}_{1} \text { and } \mathrm{x}_{2}\end{array}\right] \mathrm{X}_{2}(s)-\left[\begin{array}{c}\text { Sum of } \\ \text { impedances } \\ \text { between } \\ \mathrm{x}_{1} \text { and } \mathrm{x}_{3}\end{array}\right] \mathrm{X}_{3}(s)=\left[\begin{array}{c}\text { Sum of } \\ \text { applied forces } \\ \text { at } \mathrm{x}_{1}\end{array}\right]$

Similarly, for M2 and M3, we obtain

$$
\begin{array}{ll}
\mathbf{M}_{1}: & {\left[M_{1} s^{2}+\left(f_{v 1}+f_{v 3}\right) s+\left(K_{1}+K_{2}\right)\right] X_{1}(s)-K_{2} X_{2}(s)-f_{v 3} s X_{3}(s)=0} \\
\mathbf{M}_{2}: & -K_{2} X_{1}(s)+\left[M_{2} s^{2}+\left(f_{v 2}+f_{v 4}\right) s+K_{2}\right] X_{2}(s)-f_{v 4} s X_{3}(s)=F(s) \\
\mathbf{M}_{3}: & -f_{v 3} s X_{1}(s)-f_{v 4} s X_{2}(s)+\left[M_{3} s^{2}+\left(f_{v 3}+f_{v 4}\right) s\right] X_{3}(s)=0
\end{array}
$$

Nonlinearity

Linear systems have two properties: (1) additivity, and (2) homogeneity.

1. Additivity (superposition):

$$
\text { If } \mathrm{r}_{1}(\mathrm{t}) \rightarrow \mathrm{c}_{1}(\mathrm{t}) \text { and } \mathrm{r}_{2}(\mathrm{t}) \rightarrow \mathrm{c}_{2}(\mathrm{t}) \text {, then } \mathrm{r}_{1}(\mathrm{t})+\mathrm{r}_{2}(\mathrm{t}) \rightarrow \mathrm{c}_{1}(\mathrm{t})+\mathrm{c}_{2}(\mathrm{t})
$$

2. Homogeneity:
$r(t)$: Input
$c(t)$: Output

If $\mathrm{r}_{1}(\mathrm{t}) \rightarrow \mathrm{c}_{1}(\mathrm{t})$, then $\mathrm{Ar}_{1}(\mathrm{t}) \rightarrow \mathrm{Ac}_{1}(\mathrm{t})$
motor does not respond at very low input voltages due to frictional forces exhibits a nonlinearity called dead zone

Some physical nonlinearities

Linearization

- If the system is nonlinear, we must linearize the system before we can find the transfer function.
- Making linear approximation to a nonlinear system.
- For a nonlinear system operating at point $A:\left[x_{0}, f\left(x_{0}\right)\right]$

Linear approximation :

related by the Slope m_{A} (line)
of the curve at the point A
small changes in the input δx small changes in the output $\delta f(x)$

Thus,

$$
f(x)-f\left(x_{0}\right) \approx m_{A}\left(x-x_{0}\right)
$$

$$
\delta f(x) \approx m_{A} \delta x \quad \text { Derivative of } f(x) \text { at } x=x_{0}
$$

Linearization about a point A
$\square f(x) \approx f\left(x_{0}\right)+m_{A}\left(x-x_{0}\right)=f\left(x_{0}\right)+m_{A} \delta x$
$\longrightarrow \quad f(x) \approx f\left(x_{0}\right)+m_{A} \delta x$

Linearizing a Function

Problem: Linearize $f(x)=5 \cos (x)$ about $x=\pi / 2$.

Solution:

We first find that the derivative of $f(x)$ at $x=\pi / 2$

$$
\left.\frac{d f}{d x}\right|_{x=\pi / 2}=-\left.5 \sin x\right|_{x-\pi / 2}=-5\left\{\text { Slope at } x=\frac{\pi}{2}\right.
$$

Also

$$
f\left(x_{0}\right)=f(\pi / 2)=5 \cos (\pi / 2)=0
$$

the system can be represented as

$$
f(x)=-5 \delta x \text { for small excursions of } x \text { about } \pi / 2
$$

Modeling in The Time Domain

State-space Method

Two approaches are available for the analysis and design of feedback control systems.

1. Frequency domain approach (classical approach):
based on converting a system's differential equation to a transfer function.

- Advantage: rapidly providing stability and transient response information. Thus we can immediately see the effects of varying system parameters.
- Disadvantage: limited application. It can be applied only to linear, time-invarian systems or systems that can be approximated as such.

2. State-space approach (time domain / modern approach):

Can be used:
a) To represent non-linear systems that have backlash, saturation, dead zone.
b) It can handle systems with nonzero initial conditions.

Dead Zone
c) Multiple-inputs, multiple-outputs systems can easily be represented.
d) Many commercial software packages are available.

Many calculation is needed before actual realization.

RL Network: State-Space Representation

The state-space approach for representing physical systems (state equations and the output equations are a viable (feasible) representation of the system.).

1. Select a state variable (possible system variable) : say $i(t)$.
2. Write differential equation (in terms of the state variable $i(t)$).

$$
L \frac{d i}{d t}+R i=v(t)
$$

3. Take Laplace transform:
solve for $I(s): \quad L[s I(s)-i(0)]+R I(s)=V(s) \Rightarrow I(s)=\frac{V(s)}{(L s+R)}+\frac{L i(0)}{L s+R}$
If $v(t)=u(t)$, then $V(s)=1 / s . \Rightarrow I(s)=\frac{1}{s(L s+R)}+\frac{L i(0)}{L s+R}$
$\Rightarrow I(s)=\frac{A}{s}+\frac{B}{L s+R}+\frac{L i(0)}{L s+R} \Rightarrow I(s)=\frac{1}{R}\left(\frac{1}{s}-\frac{1}{s+\frac{R}{L}}\right)+\frac{i(0)}{s+\frac{R}{L}}$
Inverse Laplace transform: $i(t)=\frac{1}{R}\left(1-e^{-(R / L) t}\right)+i(0) e^{-(R / L) t}$
4. Output equations:

Algebraically combine the state variables with the system's input and find all of the other system variables for $t \geq t_{0}$.

$$
\begin{aligned}
& v_{R}(t)=\operatorname{Ri}(t) \\
& v_{L}(t)=v(t)-\operatorname{Ri}(t) \\
& \frac{d i}{d t}=\frac{1}{L}[v(t)-\operatorname{Ri}(t)]
\end{aligned}
$$

If we know initial condition of i, $i(0)$, and input voltage, $v(t)$, then we can find the value of any network variables at time $t \geq t_{0}$.

Self Study

Do the State-space representation of RLC network.

The General State-Space Representation

Some Terminology

- Linear combination: (of n variables x_{i})

$$
S=K_{n} x_{n}+K_{n-1} x_{n-1}+\ldots . .+K_{1} x_{1}
$$

none of the variables can be written as
a linear combination of the others.

- Linear independence: S is zero if every K is zero and no x is zero: variables x are linearly independent.
- System variable: Any variable that responds to an input or initial conditions in a system.
- State variables: The smallest set of linearly independent system variables that completely determines (knowing the value at t_{0}) the value of system variables for $t \geq t_{0}$
- State vector: A vector whose elements are state variables.
- State space: The n-dimensional space whose axes are the state variables.
- State equations: A set of n simultaneous, first-order differential equations with n variables (state variables).
- Output equations: The equation that expresses the output variables of a system as linear combinations of the state variables and the inputs.

State-space Representation

- A system is represented in state-space by the following equations: x : state vectot

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \leftarrow \text { State equation } \\
y=C x+D u \leftarrow \text { Output equation }
\end{array}\right.
$$

\dot{x} : derivative of the state vector w.r.t. time y : Output vector
u: input or controlvector
A: system matrix
B: input matrix
C : output matrix
D: feedforward matrix

- This representation of a system provides complete knowledge of all variables of the system at any $t \geq t_{0}$
- is not unique.
- The choice of state variables:
- minimum number (equals the order of the differential equation).
- are linearly independent.

Problem:

$$
\dot{x}_{1}=x_{2}
$$

Given the following system:

$$
\dot{x}_{2}=-2 x_{1}-x_{2}+5 u
$$

Set the system on the following state-space form:

$$
y=x_{2}
$$

Solution: \qquad
State-space model:

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-2 & -1
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\underbrace{\left[\begin{array}{l}
0 \\
5
\end{array}\right]}_{\widetilde{B}} u \\
y & =\underbrace{\left[\begin{array}{ll}
0 & 1
\end{array}\right]}_{\sigma}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\underbrace{[0]}_{\tilde{D}} u
\end{aligned}
$$

Example-1: State-space Representation

Problem:

Find a state-state representation of the following electrical network if the output is i_{R} the current through the resistor, $(v(t)$ is the input $)$.

Solution:

\qquad
The following steps will yield a viable representation of the network in state space.
Step 1: Label all the branch currents in the network (These include i_{L}, i_{R}, and i_{C}).
Step 2: Select the state variables (quantities that are differentiated v_{C} and i_{L}, energy-storage elements, the inductor C and the capacitor L) and write derivative equations.

$$
C \frac{d v_{C}}{d t}=i_{C}, \quad L \frac{d i_{L}}{d t}=v_{L}
$$

Step 3: Express non-state variables (right-hand side: i_{C} and v_{L}) as a linear combinations of the state variables (differentiated variables: v_{C} and i_{L}) and the input, $v(t)$.

$$
\begin{aligned}
i_{C} & =-i_{R}+i_{L}=-\frac{1}{R} v_{C}+i_{L} \\
v_{L} & =-v_{C}+v(t)
\end{aligned}
$$

Apply Kirchhoff's voltage and current laws, to obtain i_{C} and v_{L} in terms of the state variables, v_{C} and i_{L}.

Example-1: State-space Representation-contd.

Step 4: Obtain state equations: (by substituting the values and rearranging)

$$
\begin{aligned}
C \frac{d v_{C}}{d t} & =-\frac{1}{R} v_{C}+i_{L}, \quad L \frac{d i_{L}}{d t}=-v_{C}+v(t) \\
\Rightarrow \frac{d v_{C}}{d t} & =-\frac{1}{R C} v_{C}+\frac{1}{C} i_{L} \quad \xrightarrow{\square} \begin{array}{l}
\text { Matrix Form }
\end{array} \quad\left\{\begin{array}{l}
\frac{d v_{C}}{d t}=-\frac{1}{R C} \cdot v_{C}+\frac{1}{C} \cdot i_{L}+0 \cdot v(t) \\
\frac{d i_{L}}{d t}=-\frac{1}{L} \cdot v_{C} \cdot v_{C}+0 \cdot i_{L}+\frac{1}{L} \cdot v(t)
\end{array}\right.
\end{aligned}
$$

Step 5: Find the output equation: $i_{R}=\frac{1}{R} v_{C} \quad \Rightarrow \quad i_{R}=\frac{1}{L} \cdot v_{C}+0 \cdot i_{L}$

Final result: Convert into vector-matrix form

$$
\begin{aligned}
& {\left[\begin{array}{l}
\stackrel{\rightharpoonup}{v}_{C} \\
\stackrel{i}{i}_{L}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{R C} & \frac{1}{C} \\
-\frac{1}{L} & 0
\end{array}\right]\left[\begin{array}{l}
v_{C} \\
i_{L}
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{L}
\end{array}\right] v(t)} \\
& i_{R}=\left[\begin{array}{ll}
\frac{1}{R} & 0
\end{array}\right]\left[\begin{array}{l}
v_{C} \\
i_{L}
\end{array}\right]
\end{aligned}
$$

Example-2: State-space Representation

(with a dependent source)

PROBLEM: Find the state and output equations for the electrical network shown in Figure.
If the output vector is $y=\left[\begin{array}{ll}v_{R_{2}} & i_{R_{2}}\end{array}\right]^{T}$
Step 1: Label all the branch currents in the network.
Step 2: Select the state variables (energy-storage elements: L and C) and write derivative equations (voltage-current relationships).

$$
C \frac{d v_{C}}{d t}=i_{C}, \quad L \frac{d i_{L}}{d t}=v_{L} \quad \quad \mathrm{x}_{1}=i_{\mathrm{L}} ; \quad \mathrm{x}_{2}=v_{C} ; \quad \text { the state variables (differentiated variables) }
$$

Step 3: State equations (we find v_{L} and i_{C} in terms of the state variables)

$$
\begin{align*}
\operatorname{mesh} L C R_{2} & v_{L}=v_{C}+v_{R 2}=v_{C}+i_{R 2} R_{2} \\
\text { Node } 2 \longrightarrow & \text { At node } 2, i_{R 2}=i_{C}+4 v_{L}, \text { so we get, } \\
& v_{L}=v_{C}+\left(i_{C}+4 v_{L}\right) R_{2} \\
& \Rightarrow v_{L}=\frac{1}{1-4 R_{2}}\left(v_{C}+i_{C} R_{2}\right) \tag{2}\\
& \left(1-4 R_{2}\right) v_{L}-R_{2} i_{C}=v_{C} \tag{1}
\end{align*}
$$

$$
\text { Node 1 } \begin{aligned}
i_{C} & =i(t)-i_{R 1}-i_{L} \\
& =i(t)-\frac{v_{R 1}}{R_{1}}-i_{L} \quad\left(v_{R_{1}}=v_{L}\right) \\
& =i(t)-\frac{v_{L}}{R_{1}}-i_{L} \\
\Rightarrow & -\frac{1}{R_{1}} v_{L}-i_{C}=i_{L}-i(t)
\end{aligned}
$$

Example-2: State-space Representation

Solving (1) and (2) simultaneously for v_{L} and i_{C} yields

$$
\begin{aligned}
& -\frac{1}{R_{1}} v_{L}-i_{C}=i_{L}-i(t) \Rightarrow i_{C}=-\frac{1}{R_{1}} v_{L}-i_{L}+i(t) \stackrel{(1)}{\Rightarrow}\left(1-4 R_{2}\right) v_{L}-R_{2}\left(-\frac{1}{R_{1}} v_{L}-i_{L}+i(t)\right)=v_{C} \\
& \quad \Rightarrow\left(1-4 R_{2}+\frac{R_{2}}{R_{1}}\right) v_{L}+R_{2} i_{L}-R_{2} i(t)=v_{C} \Rightarrow v_{L}=\frac{1}{\Delta}\left[R_{2} i_{L}-v_{C}-R_{2} i(t)\right] \text { with } \Delta=-\left(1-4 R_{2}+\frac{R_{2}}{R_{1}}\right)
\end{aligned}
$$

$$
\text { and } \quad i_{C}=\frac{1}{\Delta}\left[\left(1-4 R_{2}\right) i_{L}+\frac{1}{R_{1}} v_{C}-\left(1-4 R_{2}\right) i(t)\right]
$$

writing the result in vector-matrix form $\left[\begin{array}{l}\dot{i}_{L} \\ \dot{v}_{C}\end{array}\right]=\left[\begin{array}{cc}R_{2} /(L \Delta) & -1 /(L \Delta) \\ \left(1-4 R_{2}\right) /(C \Delta) & 1 /\left(R_{1} C \Delta\right)\end{array}\right]\left[\begin{array}{l}i_{L} \\ v_{C}\end{array}\right]$

$$
+\left[\begin{array}{c}
-R_{2} /(L \Delta) \\
-\left(1-4 R_{2}\right) /(C \Delta)
\end{array}\right] i(t)
$$

Step 4: Output equations

$$
v_{R 2}=-v_{C}+v_{L} ; \quad i_{R 2}=i_{C}+4 v_{L}
$$

vector-matrix form, the output equation is $\left[\begin{array}{l}v_{R_{2}} \\ i_{R_{2}}\end{array}\right]=\left[\begin{array}{cc}R_{2} / \Delta & -(1+1 / \Delta) \\ 1 / \Delta & \left(1-4 R_{1}\right) /\left(\Delta R_{1}\right)\end{array}\right]\left[\begin{array}{l}i_{L} \\ v_{C}\end{array}\right]+\left[\begin{array}{c}-R_{2} / \Delta \\ -1 / \Delta\end{array}\right] i(t)$

Example-3: State-space Representation

(Translational Mechanical System)

For M1: $\quad M_{1} s^{2} X_{1}(s)+D s X_{1}(s)+K X_{1}(s)-K X_{2}(s)=0$

$$
\Rightarrow M_{1} \frac{d^{2} x_{1}}{d t^{2}}+D \frac{d x_{1}}{d t}+K x_{1}-K x_{2}=0
$$

For M2:

$$
\begin{aligned}
& -K X_{1}(s)+K X_{2}(s)+M_{2} s^{2} X_{2}(s)=F(s) \\
& \Rightarrow-K x_{1}+K x_{2}+M_{2} \frac{d^{2} x_{2}}{d t^{2}}=f(t)
\end{aligned}
$$

$$
\text { Let, } \quad \frac{d^{2} x_{i}}{d t^{2}}=\frac{d v_{i}}{d t}
$$

(acceleration $=$ derivative of velocity $)$
Select $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{v}_{1}, \mathrm{v}_{2}$ as state variables.

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=v_{1} \Rightarrow \frac{d^{2} x_{1}}{d t^{2}}=\frac{d v_{1}}{d t}=\dot{v}_{1} \\
& \frac{d x_{2}}{d t}=v_{2} \Rightarrow \frac{d^{2} x_{2}}{d t^{2}}=\frac{d v_{2}}{d t}=\dot{v}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=\quad+v_{1} \\
& \frac{d v_{1}}{d t}=-\frac{K}{M_{1}} x_{1}-\frac{D}{M_{1}} v_{1}+\frac{K}{M_{1}} x_{2}
\end{aligned}
$$

State equations:

$$
\begin{array}{lc}
\frac{d x_{2}}{d t}= & +\mathrm{v}_{2} \\
\frac{d v_{2}}{d t}=+\frac{K}{M_{2}} x_{1} & -\frac{K}{M_{2}} x_{2}
\end{array}+\frac{1}{M_{2}} f(t)
$$

matrix form.

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{v}_{1} \\
\dot{x}_{2} \\
\dot{v}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-K / M_{1} & K / M_{1} & -K / M_{1} & 0 \\
0 & 0 & 0 & 1 \\
K / M_{2} & 0 & -K / M_{1} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
v_{1} \\
x_{2} \\
v_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 / M_{2}
\end{array}\right] f(t)
$$

Example-4: State-space Redresentation

Problem: Find the state-space representation of the electrical network shown in the figure. The output is $v_{0}(t)$.

Solution:

Using Kirchhoff's current and voltage laws:
state variables: $v_{c_{1}}, i_{L}, v_{c_{2}}$
The derivative relations (one for each energy-storage element)

$$
\left\lvert\, \begin{aligned}
& C_{1} \frac{d v_{C 1}}{d t}=i_{C 1} \\
& L \frac{d i_{L}}{d t}=v_{L} \\
& C_{2} \frac{d v_{C 2}}{d t}=i_{C 2}
\end{aligned}\right.
$$

$$
\Rightarrow \left\lvert\, \begin{aligned}
& i_{c_{1}}=i_{L}+i_{R}=i_{L}+\frac{v_{R}}{R}=i_{L}+\frac{1}{R}\left(v_{L}-v_{c_{2}}\right) \text { Mesh 2 } \\
& v_{L}=v_{i}-v_{c_{1}} \text { Mesh 1 } \\
& i_{c_{2}}=i_{R}=\frac{1}{R}\left(v_{L}-v_{c_{2}}\right)=\frac{1}{R}\left(v_{i}-v_{c_{1}}-v_{c_{2}}\right) \quad \text { Mesh 2, Mesh 1 }
\end{aligned}\right.
$$

State vector
state-space representation
$x=\left[\begin{array}{c}v_{c_{1}} \\ i_{L} \\ v_{c_{2}}\end{array}\right]$

$$
\dot{x}=\left[\begin{array}{ccc}
-1 / R C_{1} & 1 / C_{1} & -1 / R C_{1} \\
-1 / L & 0 & 0 \\
-1 / R C_{2} & 0 & -1 / R C_{2}
\end{array}\right] x+\left[\begin{array}{c}
1 / R C_{1} \\
1 / L \\
1 / R C_{2}
\end{array}\right] v_{i}(t)
$$

\Rightarrow

$$
i_{c_{1}}=-\frac{1}{R} v_{c_{1}}+i_{L}-\frac{1}{R} v_{c_{2}}+\frac{1}{R} v_{i}
$$

Converting a Transfer Function to State Space

Phase variables: A set of state variables where each state variable is defined to be the derivative of the previous state variable.
Consider a differential equation, $\quad \frac{d^{n} y}{d t^{n}}+a_{n-1} \frac{d^{n-1} y}{d t^{n-1}}+\ldots+a_{1} \frac{d y}{d t}+a_{0} y=b_{0} u$

Choose the output, $\mathrm{y}(\mathrm{t})$, and its derivatives as the state variables, x_{i}.

$$
\begin{array}{l|ll}
x_{1}=y & & \dot{x}_{1}=\frac{d y}{d t} \\
x_{2}=\frac{d y}{d t} & \text { Differentiating } \\
x_{3}=\frac{d^{2} y}{d t^{2}} & \dot{x}_{2}=\frac{d^{2} y}{d t^{2}} \\
\begin{array}{l}
\\
x_{n}=\frac{d^{n-1} y}{d t^{n-1}}
\end{array} & \dot{x}_{3}=\frac{d^{3} y}{d t^{3}} \\
& \dot{x}_{n}=\frac{d^{n} y}{d t^{n}}
\end{array}
$$

$$
\text { Substituting } \quad \dot{x}_{2}=x_{3}
$$

$$
\dot{x}_{n-1}=x_{n}
$$

$$
\dot{x}_{n}=-a_{0} x_{1}-a_{1} x_{2} \ldots-a_{n-1} x_{n}+b_{0} u
$$

What is output equation?
matrix form,

Converting a Transfer Function to State Space

$\left[\begin{array}{c}\dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_{n}\end{array}\right]=\left[\begin{array}{cccccccc}0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\ \vdots & & & & & & & \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1 \\ -a_{0} & -a_{1} & -a_{2} & -a_{3} & -a_{4} & -a_{5} & \cdots & -a_{n-1}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n-1} \\ x_{n}\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ b_{0}\end{array}\right]$
$y=\left[\begin{array}{lllll}\text { output } & & \\ 1 & 0 & 0 & \ldots & 0\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n-1} \\ x_{n}\end{array}\right]$

PROBLEM: Find the state-space representation in phase-variable form for the transfer function

$$
\frac{C(s)}{R(s)}=\frac{24}{\left(s^{3}+9 s^{2}+26 s+24\right)}
$$

Step 1 Find the associated differential equation $\left(s^{3}+9 s^{2}+26 s+24\right) C(s)=24 R(s)$

$$
\text { inverse Laplace transform, } \quad \ddot{c}+9 \ddot{c}+26 \dot{c}+24 c=24 r
$$

Step 2 Select the state variables.

$$
x_{1}=c
$$

$$
\begin{aligned}
\dot{x}_{1} & = \\
\dot{x}_{2} & = \\
\dot{x}_{3} & =-24 x_{1}-26 x_{2}-9 x_{3}+24 r \\
y & =c=x_{1}
\end{aligned}
$$

$$
x_{2}=\dot{c}
$$

the state equations.

$$
x_{3}=\ddot{c}
$$

matrix form,

$$
\begin{gathered}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
-24 & -26 & -9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
24
\end{array}\right] r} \\
y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{gathered}
$$

Block Diagram Reduction

- More complicated systems are represented by the interconnection of many subsystems.
- In order to calculate the transfer function, we want to represent multiple subsystems as a single block.
- A subsystem is represented as a block with an input, an output, and a transfer function.

Summing junction
block diagram

Cascade Form

Reduction of Multiple Subsystems 2

Parallel Form

equivalent transfer function

Feedback Form
 transfer function

$$
\begin{gathered}
C(s)=G(s) E(s) \\
\text { But since } \begin{array}{c}
E(s)=R(s) \mp C(s) H(s) \\
C(s)=G(s)[R(s) \mp C(s) H(s)] \\
C(s)=G(s) R(s) \mp G(s) C(s) H(s) \\
{[1 \pm G(s) H(s)] C(s)=G(s) R(s)} \\
\substack{\text { equivalent } \\
\text { tranfer function }}
\end{array} \frac{C(s)}{R(s)}=\frac{G(s)}{1 \pm G(s) H(s)}
\end{gathered}
$$

Reduction of Multiple Subsystems 3

Moving Blocks to Create Familiar Forms

- Familiar forms (cascade, parallel, and feedback) are not always apparent in a block diagram

Block diagram algebra for summing junction

Block diagram algebra for pickoff point
 the left past a pickoff point.

Equivalent forms for moving a block to the right past a pickoff point.

Example

Problem: Reduce the system shown in Figure

 to a single transfer function.Solution:

The three summing junctions can be summing junction
$\mathrm{G}_{2}(s)$ and $\mathrm{G}_{3}(s)$ are connected in cascade.

[^0]: ${ }^{1}$ For this theorem to yield correct finite results, all roots of the denominator of $F(s)$ must have negative real parts, and no more than one can be at the origin.
 ${ }^{2}$ For this theorem to be valid, $f(t)$ must be continuous or have a step discontinuity at $t=0$ (that is, no impulses or their derivatives at $t=0$).

