(CHEM 101) THIRD SEMESTER SECOUND MID-TERM EXAM (1437-1438H) (2016-2017G)

COLLEGE OF SCIENCE Chemistry Department

الاسم:	Write your answer in the table below					
	Q1:	Q6:	Q11:			
الرقم الجامعي:	Q2:	Q7:	Q12:			
رقم الشعبة:	Q3:	Q8:	Q13:			
Sunday21/11/1438H07:00-08:30 PM	Q4:	Q9:	Q14:			
Time allowed : 90 minutes	Q5:	Q10:	Q15:			

Information you may need

Periodic table:

1 IA																	18 VIIIA
1																	2
H	2											13	14	15	16	17	He
1.008	IIA	-									_	IIIA	IVA	VA	VIA	VIIA	4.003
3	4							key	atomic	number		5	6	7	8	9	10
Li	Be								sym	nbol		В	С	N	0	F	Ne
6.94	9.01								atomic	weight		10.811	12.01	14.01	16.00	19.00	20.18
11	12										•	13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	ΑI	Si	Р	S	CI	Ar
23.00	24.31	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	26.98	28.09	30.97	32.07	35.45	39.98
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.09	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.546	65.41	69.72	72.64	74.9216	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.47	87.62	88.91	91.23	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.760	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.980	[209]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113				-	
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	В				
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[285]	[286]					

Constants:

1 atm = 760 torr = 101.325 kPa

 $R = 8.314 \; Pa \; m^3 \; mol^{-1} \; K^{-1} = 0.0821 \; atm \; L \; mol^{-1} \; K^{-1} = 8.314 \; J \; mol^{-1} \; K^{-1} = 62.36 \; torr \; L \; mol^{-1} \; K^{-1} = 1.00821 \; atm \; L \; mol^{-1} \; K^{-1} = 1.00821 \; a$

 N_A (Avogadro's Number) = 6.022×10^{23} mol⁻¹

1 L.atm = 101.325 J

Choose the correct answer:

1) Change in internal energy ΔE^{o} (ΔU^{o}), in kJ, of the following reaction is:

$$2NaHCO_3(s) \rightarrow Na_2CO_3(s) + H_2O(g) + CO_2(g)$$

$$\Delta H_{rxn}^{o} = 129 \text{ kJ}$$

- A) 114.04
- B) 121.04
- C) 134.04
- D) 124.04
- 2) The combustion of methane (CH₄) produces heat energy according to:

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$

$$\Delta H_{rxn}^{o} = -890 \text{ kJ}$$

The mass of methane (in g) needed to produce 62692 kJ of heat energy, is:

- A) 1100
- B) 1120
- C) 1130
- D) 1150

3) From the enthalpies of the following reactions:

$$2HF(g) \rightarrow H_2(g) + F_2(g)$$

$$\Delta H = 537 \text{ kJ}$$

$$2C(gr) + 2H_2(g) \rightarrow C_2H_4(g)$$

$$\Delta H = 52 \text{ kJ}$$

$$C(gr) + 2F_2(g) \rightarrow CF_4(g)$$

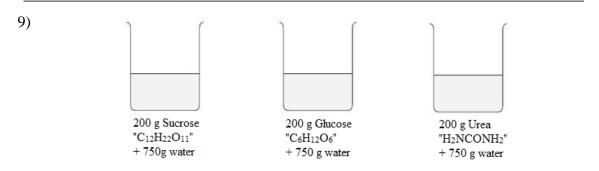
$$\Delta H = -680 \text{ kJ}$$

Calculate (in kJ) ΔH for the following reaction:

$$C_2H_4(g) + 6F_2(g) \rightarrow 2CF_4(g) + 4HF(g)$$

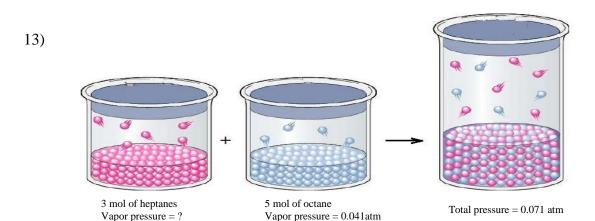
- A) +2174
- B) -2486
- C) -2298
- D) -2174
- 4) Knowing that $\Delta H_f^o \text{CO}_2(g) = -393.5 \text{ kJ/mol}, \ \Delta H_f^o \text{H}_2\text{O}(l) = -285.8 \text{ kJ/mol}, \ \Delta H_f^o \text{NO}_2(g) = +33.3 \text{ kJ/mol}, \text{ and } \Delta H_f^o \text{CH}_3\text{NO}_2(l) = -112.4 \text{ kJ/mol}.$

Calculate (in kJ) ΔH_{rxn}^{o} for the following reaction:


$$4\text{CH}_3\text{NO}_2(l) + 7\text{O}_2(g) \rightarrow 4\text{CO}_2(g) + 6\text{H}_2\text{O}(l) + 4\text{NO}_2(g)$$
 $\Delta H_{rxn}^o =$

- A) 4496
- B) -2706
- C) -4496
- D) 2706
- 5) An ideal gas is allowed to expand from 7.0 L to 15.0 L at 0.76 atm, after absorbing 476 J of heat. The change in the internal energy $\Delta E (\Delta U)$ for this gas system (in J) is:
- A) -180
- B) +180
- C) -160
- D) -140
- 6) A piece of a metal at 180 °C is placed in 120 g of water at 20 °C. If the final temperature of the mixture is 24.4 °C, what is the mass (in g) of this metal? (C_s of the metal is 0.474 J/g °C and C_s of water is 4.184 J/g °C)
- A) 37.5
- B) 30.0

- C) 26.0
- D) 21.5


7)	_		a constant pressure of 1.0 atrolume of the gas (in L)?	n and does work
A)	5.7	B) 6.4	C) 7.2	D) 8.4

- The internal energy ΔE (ΔU) of the system is always of a positive value if the system:
 - A) Absorbs heat and does work.
 - B) Absorbs heat and has work done on it.
 - C) Release heat and does work.
 - D) Release heat and has work done on it.

Which of the following statements is true?

- A) The three solutions will have the same vapor pressure.
- B) The sucrose solution will have the highest vapor pressure.
- C) The glucose solution will have the highest vapor pressure.
- D) The urea solution will have the highest vapor pressure.
- 10) At a given temperature, the mass (in g) of nitrogen gas "N2" that dissolves in 80.0 L of water and under nitrogen gas partial pressure of 0.79 atm is: (The Henery's law constant of "N₂" in water the same temperature = 6.8×10^{-4} mol/L.atm)
- A) 1.2
- B) 1.4
- C) 1.6
- D) 1.8
- 11) The change in the freezing point (ΔT_f) of a solution prepared by dissolving 50.0 g of glycerin "C₃H₈O₃" (a nonelectrolyte) in 200 g of ethanol is: $(K_f \text{ of ethanol} = 2.0 \text{ °C/m})$
 - A) 2.4
- B) 3.4
- C) 5.4
- D) 7.4
- 12) The value of the constant (k_b) "the molal boiling point elevation constant" depends on:
- A) nature of solvent
- B) nature of solute C) solute molar mass
- D) pressure

What will be the vapor pressure (in atm) of pure heptane at the constant temperature?

A) 0.102

- B) 0.030
- C) 0.142
- D) 0.121

- 14) At given temperature, the solubility of nitrogen gas at 0.687atm is 4.7×10⁻⁴mol/L. What is the Henry's law constant (in mol/L.atm) at the same temperature?
- A) 3.8×10^{-4}
- B) 6.8×10^{-4}
- C) 7.5×10^{-4}
- D) 8.2×10⁻⁴
- 15) The observed osmotic pressure (in atm) of a 0.01 M magnesium sulfate "MgSO₄" solution at 25°C (knowing that the van Hoff factor for MgSO₄ in this solution = 1.3) is:
- A) 0.318
- B) 0.488
- C) 0.244
- D) 0.425