King Saud University College of Science Department of Statistics & Operations Research ## STAT 109 Mid Term-II Examination Second Semester | Student Name | | |------------------------|-----------------| | Student Number: | Section Number: | | Teacher Name: | Serial Number: | - **▶** Mobile Telephones are not allowed in the classrooms - → Time allowed is 1 and 1/2 hour - **▶** Attempt all questions - **▶** Choose the nearest number to your answer - ▶ For each question, put the code of the correct answer in the following table beneath the question number: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |---|---|---|---|---|---|---|---|---|----| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |----|----|----|----|-----------|----|-----------|----|----|-----------| | | | | | | | | | | | | 21 | 22 | 23 | 24 | 25 | |----|----|----|----|----| | | | | | | The researchers found that the amount of time children spent in upright position followed a normal distribution with mean of 5.4 hours and standard deviation of 1.3 hours. Find: 1) The probability that a child selected at random spend greater than **5.4** hours in upright position: | (A) 0.99 | (B) 0.75 | (C) 1.00 | (D) <u>0.50</u> | |----------|----------|----------|-----------------| 2) The probability that a child selected at random spend less than 3 hours in upright position: | (A) 0.9332 | (B) 0.0691 | (C) 0.7286 | (D) <u>0.0322</u> | |------------|------------|------------|-------------------| 3) The probability that a child selected at random will spend between 3 and 5 hours is: | (A) 0.8085 (B) 0.6915 | (C) <u>0.324</u> | (D) 0.9332 | |-----------------------|------------------|------------| |-----------------------|------------------|------------| 4) The probability that a child selected at random will spend less than k hours is 0.967 Then the value of k is: | (A) 7.79 | (B) 4.5 | (C) 5.1 | (D) 40 | |------------|---------|---------|--------| | (1 1) 1117 | (2) | (C) 3.1 | (2) .0 | 5) In a population of 10,000 children the number of children expect be upright more than 8.5 hours is: | | (A) 87 | (B) 225 | (C) 112 | (D) 43 | |--|--------|---------|---------|--------| |--|--------|---------|---------|--------| **>> >> >> >>** In a sample of 323 children and adults (68 females and 255 males) assaulted. 31 of females and 53 of males reported aggression. Then **6)** The point estimate of the population proportion of males assaulted is: | (4) 0.0050 | (D) 0.51.40 | (0) 0 7 10 6 | (D) 0 4550 | |------------|-------------------------------------|-------------------------|---| | (A) 0.2078 | (B) 0.7149 | (C) 0.5436 | (D) 0.4559 | | (A) 0.2070 | $ (\mathbf{D}) \cup (1\mathbf{T}) $ | (C) 0.5 - 50 | $(D) \cup T \cup D \cup T T$ | 7) The standard error estimate of the mean for males is | (A) 0.3256 | (B) 0.1012 | (C) <u>0.0157</u> | (D) 0.6543 | |------------|------------|-------------------|------------| 8) the 95% confidence interval for the proportion of all males assaulted is | (4)(0.0405.0.1061) | (D) (0.1001 0.0001) | (0) (0 00 (0 0 000) | (D) (0.0000 0.0000) | |----------------------|----------------------|------------------------|---------------------| | L(A)(0.2495. 0.1361) | (B)(0.1891.0.2821) | L(C)(U.2068. U.2088) - | (D)(0.2088, 0.2068) | | (11)(0.21)3, 0.1301) | (D) (0.10)1, 0.2021) | (0)(0.2000, 0.2000) | (D)(0.2000; 0.2000) | 9) the point estimate for the difference between the proportions of females and males assaulted in the two sampled populations is | (A) 0.5344 | (B) 0.7345 | (C) <u>0.2481</u> | (D) 0.4006 | |------------|------------|-------------------|------------| |------------|------------|-------------------|------------| 10) The standard error estimate of the difference between population proportions is 11) the 95 % confident interval for the difference between the proportions of females and males assaulted them in the two sampled populations is ## **>> >> >> >>** The average level of some enzyme for a sample of 10 individuals, was found to be 22. Assume population follow a normal distribution variance 45. Then 12) The 100 (1- α) percent confidence interval for the population average μ is expressed as | (A) $\overline{x} \pm z_{(1-\alpha/2)} \sigma / \sqrt{n}$ | (B) $\overline{x} \pm z_{(1-\alpha/2)} S / \sqrt{n}$ | |---|--| | (C) $\bar{x} \pm t_{n-1,(1-\alpha/2)} \sigma / \sqrt{n}$ | (D) $\overline{x} \pm t_{n-1,(1-\alpha/2)} S / \sqrt{n}$ | 13) The 99% confidence interval for μ is given by ## **>> >> >>** A study of inpatient treatment days for psychiatric disorder selected randomly from two independent normal populations with equal variances gave the following results: | Group | Sample size | $\overline{\chi}$ | S | |--------------------|-------------|-------------------|--------| | | | (days) | (days) | | with schizophrenia | 18 | 4.7 | 9.3 | | Bipolar disorder | 10 | 8.8 | 11.5 | 14) The point estimate of the difference between first and second population means is | (A) 13.2 | (B) 0.04 | (C) 3 | (D) <u>-4.1</u> | |----------|----------|-------|-----------------| 15) The standard error estimate of the difference between population means is | (1) 7 2256 | (D) 5 0010 | (C) 2.00 | (D) 0 (5.12 | |------------|------------|----------|-------------| | (A) 7.3256 | (B) 5.8012 | (C) 3.99 | (D) 0.6543 | 16) The 95% confidence interval for the difference between population means is | he point estimate | of the population n | nean is: | | |---|---|---|---| | (A) <u>250.8</u> | (B) 0.57 | (C) 1 | (D) 0.1 | | the estimate of the samples of size | | the distribution of | of the sample mean | | (A) 0.4165 | (B) 0.1 | (C) 3.16 | (D) <u>30.03</u> | | → →
ose that Z is dist | tributed according | to the standard | (D) (181.1, 320) | | ose that Z is dist | e curve to the right o | f z = 1.67 is: | normal distribution | | ose that Z is distance the area under the (A) 0.7815 | (B) <u>0.9525</u> | f z = 1.67 is:
(C) 0.1867 | 1 1 2 | | The area under the (A) 0.7815 | e curve to the right o | f z = 1.67 is:
(C) 0.1867 | normal distribution | | he area under the (A) 0.7815 the z value that ha (A) 0.5 the value of k such | e curve to the right of the curve to the right of the curve to cu | f z = 1.67 is:
(C) 0.1867
s left, is:
(C) $\underline{0}$
67) = 0.8607 | normal distribution (D) 0.0154 (D) -0.5 | | ose that Z is distributed in the area under the (A) 0.7815 The area under the (A) 0.7815 The z value that hat (A) 0.5 The value of k such that (A) 0.9727 The mean and states in the second se | e curve to the right of the curve to the right of the curve to cu | f z = 1.67 is:
(C) 0.1867
s left, is:
(C) 0
(C) 0
(C) 0
(C) 1.33
of serum iron for | normal distribution | | he area under the (A) 0.7815 the z value that has (A) 0.5 the value of k such (A) 0.9727 the mean and so and 15 (microgram | e curve to the right of (B) 0.9525 as an area of 0.5 to its (B) 1 th that $P(k \le Z \le 1)$. (B) 0.8665 tandard deviation of ms per 100 ml), res | f z = 1.67 is:
(C) 0.1867
s left, is:
(C) 0
67) = 0.8607
(C) 1.33
of serum iron for pectively, then | (D) 0.0154
(D) -0.5 |