King Saud University College of Science Department of Statistics & Operations Research



# STAT 109 Mid Term-II Examination

| <b>Student Name</b>    |                        |  |
|------------------------|------------------------|--|
| <b>Student Number:</b> | <b>Section Number:</b> |  |
| <b>Teacher Name:</b>   | Serial Number:         |  |

- **▶** Mobile Telephones are not allowed in the classrooms
- → Time allowed is 1 and 1/2 hour
- **▶** Attempt all questions
- **▶** Choose the nearest number to your answer
- ▶ For each question, put the code of the correct answer in the following table beneath the question number:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|----|
| D | С | A | A | В | С | A | A | D | C  |

| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|----|----|----|----|----|----|----|----|----|----|
| C  | В  | D  | C  | В  | D  | C  | В  | A  | D  |

| 21 | 22 | 23 | 24 | 25 |
|----|----|----|----|----|
| A  | В  | В  | C  | C  |

## **QUESTIONS 1-3**

The IQ (Intelligent Quotient) of individuals admitted to a state school for the mentally retarded are approximately normally distributed with a mean of 60 and a standard deviation of 10, then:

1) The probability that an individual picked at random will have an IQ greater than 75 is:

| (A) 0.9332 | (B) 0.8691 | (C) 0.7286 | (D) <u>0.0668</u> |
|------------|------------|------------|-------------------|

2) The probability that an individual picked at random will have an IQ between 55 and 75 is:

| (A) 0.3085 (B) 0.6915 | (C) <u>0.6247</u> | (D) 0.9332 |
|-----------------------|-------------------|------------|
|-----------------------|-------------------|------------|

3) If the probability that an individual picked at random will have an IQ less than k is 0.1587. Then the value of k

| (A) <u>50</u> | (B) 45 | (C) 51 | (D) 40 |
|---------------|--------|--------|--------|
|---------------|--------|--------|--------|

## **QUESTIONS 4 - 7**

In a sample of 225 males, 53 use internet while in a sample of 68 females, 31 use internet in the internet café. Then

4) the point estimate of the population proportion of males using internet is

| (A) 0.2356 (B) 0.7149 | (C) 0.5436 | (D) 0.4559 |
|-----------------------|------------|------------|
|-----------------------|------------|------------|

5) the 90% confidence interval for the proportion of all males using internet is

| (A)(0.2495, 0.1361) (B) (0.1891, 0.282) | (C)(0.2068, 0.2088) (D)(0.2088, 0.2068) |
|-----------------------------------------|-----------------------------------------|
|-----------------------------------------|-----------------------------------------|

**6**) the point estimate for the difference between the proportions of females and males using internet in the two sampled populations is

7) the 99 % confident interval for the difference between the proportions of females and males using internet in the two sampled populations is

| (A) (0.049, 0.392) | (B) (0.119, 0.377) | (C)(0.023 + 0.108) | (D)(0.521_1.034)  |
|--------------------|--------------------|--------------------|-------------------|
| (A) (0.049, 0.392) | (D) (0.119, 0.377) | (C)(0.023, 0.108)  | (D)(0.321, 1.034) |

### **QUESTIONS 8 - 9**

The average number of heart beats per minute for a sample of 49 subjects was found to be 90. Assume population standard deviation is 10. Then

8) The 100 (1- $\alpha$ ) percent confidence interval for the population average  $\mu$  is

expressed as

| (A) $\overline{x} \pm z_{(1-\alpha/2)} \sigma / \sqrt{n}$ | (B) $\overline{x} \pm z_{(1-\alpha/2)} S / \sqrt{n}$     |
|-----------------------------------------------------------|----------------------------------------------------------|
| (C) $\bar{x} \pm t_{n-1,(1-\alpha/2)} \sigma / \sqrt{n}$  | (D) $\overline{x} \pm t_{n-1,(1-\alpha/2)} S / \sqrt{n}$ |

9) The 95% confidence interval for  $\mu$  is given by

# **QUESTIONS 10 - 12**

On an average, five smokers pass a certain street corner every 10 minutes. Assuming that the number of smokers follows Poisson distribution, then

**10**) The probability that, during a given 10-minute period, the number of smokers passing the street corner will be eight is:

| (A) 0.935 | (B) 0.025 | (C) <u>0.065</u> | (D) 0.075 |
|-----------|-----------|------------------|-----------|
|-----------|-----------|------------------|-----------|

11) The average number of smokers passing the street corner during a given 20-minute period will be:

| (A) 5 | (B) 100 | (C) <u>10</u> | (D) 50 |
|-------|---------|---------------|--------|

**12**) The probability that no smoker passing the street corner during a given 5-minute period is:

| (A) 0.9179 | (B) <u>0.0821</u> | (C) 0.0067 | (D) 0.9933 |
|------------|-------------------|------------|------------|

## **QUESTIONS 13 - 15**

Transverse diameter measurements on the hearts of males and females selected randomly from two independent normal populations with equal variances gave the following results:

| Group   | Sample size | $\overline{x}$ | S    |
|---------|-------------|----------------|------|
|         |             | (cm)           | (cm) |
| Males   | 12          | 13.21          | 1.05 |
| Females | 9           | 11.00          | 1.01 |

13) The point estimate of the difference between population means is

| (A) 13.2 | (B) 0.04 | (C) 3 | (D) 2.21        |
|----------|----------|-------|-----------------|
| (11) 10. | (2) 0.0. | (0)0  | (2) <u>=:==</u> |

14) The standard error estimate of the difference between population means is

| - 1 |            |            |                   |            |
|-----|------------|------------|-------------------|------------|
|     | (A) 0.3256 | (B) 0.8012 | (C) <u>0.4557</u> | (D) 0.6543 |

**15**) The 99% confidence interval for the difference between population means is

#### **QUESTIONS 16 - 18**

Assume that 25 % of the people in a certain large population have low blood pressure. A sample of 3 people is selected at random from this population. Let X be the number of people in the sample who have low blood pressure, then:

**16)** The values of mean and variance of the random variable X are:

17) The probability that at least two persons will have low blood pressure, is:

| (A) 0.8438 (B) 0.25 | (C) 0.1563 | (D) 0.01563 |
|---------------------|------------|-------------|
|---------------------|------------|-------------|

18) The probability that there will be at most two persons with low blood pressure, is:

| (A) 0.01563 | (B) <u>0.9844</u> | (C) 0.75 | (D) 0.1406 |
|-------------|-------------------|----------|------------|

## **QUESTIONS 19 - 22**

If the uric acid values in mg in healthy adult males are approximately normally distributed with a mean and standard deviation of 5.7 and 1 respectively, then

19) The mean of the distribution of the sample mean  $\bar{x}$  for the samples of size 10 is

| (A) <u>5.7</u> | (B) 0.57 | (C) 1 | (D) 0.1 |
|----------------|----------|-------|---------|
|----------------|----------|-------|---------|

**20**) The standard error of the distribution of the sample mean  $\overline{x}$  for the samples of size 10 is

| (A) 0.4165 | (B) 0.1 | (C) 3.16 | (D) <u>0.3162</u> |
|------------|---------|----------|-------------------|

21) The probability that a sample of size 9 will yield a mean greater than 6 is

| (A) 0.1841 | (B) 0.8159 | (C) 0.5 | (D) 0.1243 |
|------------|------------|---------|------------|
|------------|------------|---------|------------|

22) The probability that a sample of size 9 will yield a mean between 5 and 6 is

| (A) 0.8016 | (B) <u>0.7980</u> | (C) 0.8159 | (D) 0.4332 |
|------------|-------------------|------------|------------|
|------------|-------------------|------------|------------|

### **QUESTIONS 23 - 25**

Suppose that Z is distributed according to the standard normal distribution, then:

23) The area under the curve to the right of z = -0.89 is:

| (A) 0.7815 | (B) 0.8133 | (C) 0.1867 | (D) 0.0154 |
|------------|------------|------------|------------|

**24)** The z value that has an area of 0.5 to its left, is:

| (A) 0.5 | (B) 1 | (C) <u>0</u> | (D) - 0.5 |
|---------|-------|--------------|-----------|
|---------|-------|--------------|-----------|

**25**) The value of **k** such that  $P(0.93 \le Z \le k) = 0.0427$ 

| (A) 0.9727 | (B) 0.8665 | (C) 1.11        | (D) 1 |
|------------|------------|-----------------|-------|
| () 017 / / | (2) 0.000  | (U) <u>1111</u> | (-) - |