

Quantum Theory and the Electronic Structure of Atoms

Quantum numbers

Quantum numbers are used to differentiate between electrons
i. In quantum theory, each electron in an atom is assigned a set of four quantum numbers.
ii. Three of these give the location of the electron, and the fourth gives the orientation of the electron within the orbital
iii. Definitions of numbers

quantum numbers ($n, l, m_{l}, m_{\mathrm{s}}$)
principal quantum number n
$n=1,2,3,4, \ldots$ distance of e^{-}from the nucleus

quantum numbers: $\left(n, l, m_{1}, m_{s}\right)$
angular momentum quantum number /
for a given value of $n, I=0,1,2,3, \ldots n-1$

$$
\begin{gathered}
n=1, l=0 \\
n=2, /=0 \text { or } 1 \\
n=3, /=0,1, \text { or } 2
\end{gathered}
$$

$$
\begin{array}{ll}
I=0 & s \text { orbital } \\
/=1 & p \text { orbital } \\
/=2 & d \text { orbital } \\
/=3 & f \text { orbital }
\end{array}
$$

Shape of the "volume" of space that the e occupies

/=0 (s orbitals)

$$
\text { /= } 1 \text { (} p \text { orbitals) }
$$

$$
\text { /= } 2 \text { (d orbitals) }
$$

quantum numbers: $\left(n, l, m, m_{s}\right)$

magnetic quantum number $m_{\text {/ }}$

$$
\begin{aligned}
& \text { for a given value of } / \\
& m_{l}=-/, \ldots, 0, \ldots++/
\end{aligned}
$$

if $/=1$ (p orbital), $m_{l}=-1,0$, or 1
if $/=2$ (d orbital), $m_{l}=-2,-1,0,1$, or 2
orientation of the orbital in space

$$
m_{l}=-1,0, \text { or } 1
$$

3 orientations is space

$$
m_{l}=-2,-1,0,1, \text { or } 2
$$

5 orientations is space

$$
3 d_{x^{2}-y^{2}}
$$

$3 d_{x z}$

$3 d_{z^{2}}$

$3 d_{x y}$

$3 d_{y z}$

$\left(n, l, m_{l}, m_{s}\right)$

spin quantum number m_{s}

$$
m_{\mathrm{s}}=+1 / 2 \text { or }-1 / 2
$$

quantum numbers: $\left(n, l, m_{,}, m_{s}\right)$

Existence (and energy) of electron in atom is described by its unique wave function ψ.

Pauli exclusion principle - no two electrons in an atom can have the same four quantum numbers.

Each seat is uniquely identified ($E, R 12, S 8$) Each seat can hold only one individual at a time

TABLE 7.2 Relation Between Quantum Numbers and Atomic Orbitals

\boldsymbol{n}	$\boldsymbol{\ell}$	\boldsymbol{m}_{ℓ}	Number of Orbitals	Atomic Orbital Designations
1	0	0	1	$1 s$
2	0	0	1	$2 s$
	1	$-1,0,1$	3	$2 p_{x}, 2 p_{y}, 2 p_{z}$
3	0	0	1	$3 s$
	1	$-1,0,1$	3	$3 p_{x}, 3 p_{y}, 3 p_{z}$
	2	$-2,-1,0,1,2$	5	$3 d_{x y}, 3 d_{y z}, 3 d_{x z}$,
		.	$3 d_{x^{2}-y^{2}, 3 d_{z^{2}}}$.

quantum numbers: $\left(n, l, m_{p} m_{s}\right)$
Shell - electrons with the same value of n

Subshell - electrons with the same values of n and /

Orbital - electrons with the same values of n, I, and m_{l}
How many electrons can an orbital hold?
If n, l, and m_{l} are fixed, then $m_{s}=1 / 2$ or $-1 / 2$

$$
\psi=\left(n, l, m_{l}, 1 / 2\right) \text { or } \psi=\left(n, l, m_{l,-1 / 2}\right)
$$

An orbital can hold 2 electrons

How many $2 p$ orbitals are there in an atom?
$n=2$
\vdots
$2 p$
\uparrow
$l=1$

If $/=1$, then $m_{l}=-1,0$, or +1

How many electrons can be placed in the $3 d$ subshell?

The Energies of Orbitals

Energy of orbitals in a single electron atom
Energy only depends on principal quantum number n

$$
\begin{aligned}
& 4 s-4 p---4 d-----4 f------- \\
& 3 s-3 p---3 d-----\quad \longleftarrow \mathrm{n}=3 \\
& 2 s-2 p---\longleftarrow \mathrm{n}=2 \\
& 1 s-\longleftarrow \mathrm{n}=1
\end{aligned}
$$

Energy of orbitals in a multi－electron atom Energy depends on n and／

$$
\begin{aligned}
& 5 s-4 p-\text { - } 4 d-\text { - - - } \\
& 3 d \text { ーーーーー セn=3/=2 } \\
& 3 s-\longleftarrow \overline{n=3} /=0 \quad n=3 /=1 \\
& 2 s-2 p \text { п=2 } /=0 \text { n=2 } /=1 \\
& 1 s-\longleftarrow n=1 /=0
\end{aligned}
$$

"Fill up" electrons in lowest energy orbitals (Aufbau principle)

$$
\| \text { Hel æblatゃロns }
$$

He tless ${ }^{12}$

$$
\begin{aligned}
& 5 s-4 p---\begin{array}{l}
4 d-\text { - - - } \\
3 d-\text { - - - }
\end{array} \\
& 4 s \text { - } \\
& 3 s-3 p-\bar{?} \text { ? }
\end{aligned}
$$

The most stable arrangement of electrons in subshells is the one with the greatest number of parallel spins (Hund's rule).

$$
\begin{aligned}
& 5 s-\quad 4 d-\text { - - - - } \\
& 4 s \text { - } \\
& 3 d \text { - - - - - } \\
& 3 s-3 p--- \\
& { }_{2 s} \downarrow 2 p \downarrow \llbracket \downarrow \\
& \text { Q © Elledhenns }
\end{aligned}
$$

$$
\begin{aligned}
& 1 s \xlongequal{\dagger}
\end{aligned}
$$

Order of orbitals (filling) in multi-electron atom

1 s <2 s <2 p <3 s <3 p $<4 s<3 d<4$ p $<5 s<4 d<5$ p <6 s

Electron configuration is how the electrons are distributed among the various atomic orbitals in an atom.

Orbital diagram

H

What is the electron configuration of Mg ?

$$
\begin{aligned}
& \text { Mg } 12 \text { electrons } \\
& 1 s<2 s<2 p<3 s<3 p<4 s \\
& 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} \quad 2+2+6+2=12 \text { electrons } \\
& \text { Abbreviated as }[\mathrm{Ne}] 3 s^{2} \quad[\mathrm{Ne}] 1 s^{2} 2 s^{2} 2 p^{6}
\end{aligned}
$$

What are the possible quantum numbers for the last (outermost) electron in Cl ?

Cl 17 electrons $1 \mathrm{~s}<2 \mathrm{~s}<2 \mathrm{p}<3 \mathrm{~s}<3 \mathrm{p}<4 \mathrm{~s}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} \quad 2+2+6+2+5=17$ electrons
Last electron added to 3p orbital

$$
n=3 \quad /=1 \quad m_{/}=-1,0, \text { or }+1 \quad m_{s}=1 / 2 \text { or }-1 / 221
$$

Distilling Information

1. Label the s, p, d, and f blocks in Table 3-4.

Table 3-4 Orbital Blocks of the Periodic Table

2. Which guideline, Hund's rule or Pauli's exclusion principle, is violated in the following orbital diagrams?
a.

a. \qquad
b. \qquad

3. List the element represented by each of the following electron configurations.
a. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
b. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$
c. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{1}$ \qquad
d. $[\mathrm{Rn}] 7 s^{2} 5 f^{2} 6 d^{1}$ \qquad
e. $\lfloor\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{4}$
4. List the element represented by each of the following orbital diagrams.

a.

b.

d.
d.

VALENCE ELECTRONS

Name

The valence electrons are the electrons in the outermost principal energy level. They are always " s " or " s and p " electrons. Since the total number of electrons possible in s and p sublevels is eight, there can be no more than eight valence electrons.
Determine the number of valence electrons in the atoms below.
Example: carbon
Electron configuration is $1 s^{2} \quad 2 s^{2} 2 p^{2}$ Carbon has 4 valence electrons.

1. fluorine
2. phosphorus \qquad
3. calcium \qquad
4. nitrogen \qquad
5. iron \qquad .
6. argon \qquad
7. potassium \qquad
8. helium \qquad -
9. magnesium \qquad
10. lithium
11. zinc \qquad
12. carbon \qquad
13. Iodine \qquad
14. oxygen \qquad
15. barium \qquad
16. aluminum \qquad
17. hydrogen \qquad
18. xenon \qquad
19. copper \qquad

Section 5.3 Electron Configurations

In your textbook, read about ground-state electron configurations.
Use each of the terms below just once to complete the passage.

Aufbau principle	electron configuration	ground-state electron configuration	Hund's rule
lowest	Pauli exclusion principle	spins	stable

The arrangement of electrons in an atom is called the atom's
(1) \qquad Electrons in an atom tend to assume the arrangement
that gives the atom the (2) \qquad possible energy. This arrangement of electrons is the most (3) \qquad arrangement and is called the atom's (4) \qquad _.

Three rules define how electrons can be arranged in an atom's orbitals. The
(5) \qquad states that each electron occupies the lowest energy orbital available. The (6) \qquad states that a maximum of two electrons may occupy a single atomic orbital, but only if the electrons have opposite (7) \qquad (8) \qquad states that single
electrons with the same spin must occupy each equal-energy orbital before additional electrons with opposite spins occupy the same orbitals.

Complete the following table.

ghapran

Section 5.3 continued

Answer the following questions.

12. What is germanium's atomic number? How many electrons does germanium have?
13. What is noble-gas notation, and why is it used to write electron configurations?
\qquad
\qquad
14. Write the ground-state electron configuration of a germanium atom, using noble-gas notation.

In your textbook, read about valence electrons.

Circle the Ietter of the choice that best completes the statement or answers the question.

15. The electrons in an atom's outermost orbitals are called
a. election dots.
b. quantum electrons.
c. valence electrons.
d. noble-gas electrons.
16. In an electron-dot structure, the element's symbol represents the
a. nucleus of the noble gas closest to the atom in the periodic table.
b. atom's nucleus and inner-level electrons.
c. atom's valence electrons.
d. electrons of the noble gas closest to the atom in the periodic table.
17. How many valence electrons does a chlorine atom have if its electron configuration is $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathbf{p}^{5}$?
a. 3
b. 21
c. 5
d. 7
18. Given boron's electron configuration of [He] $2 s^{2} 2 p^{1}$, which of the following represents its electron-dot structure?
a. $-\mathrm{Be} \cdot$
b. $\cdot{ }^{B} \cdot$
c. $\ddot{B}:$
c. $\stackrel{B}{\mathrm{Be}}$
19. Given beryllium's electron configuration of $1 s^{2} 2 s^{2}$, which of the following represents its electron-dot structure?
a. -Be-
b. $\cdot \dot{\mathrm{B}}$ -
c. $\ddot{B}:$
d. $\ddot{B e}$
20. Which electrons are represented by the dots in an electron-dot structure?
a. valence electrons
c. only s electrons
b. inner-level electrons
d. both a and c
