

Quantum Theory and the Electronic Structure of Atoms

Quantum numbers

Quantum numbers are used to differentiate between electrons

In quantum theory, each electron in an atom is assigned a set of four quantum ^{2s orbital} numbers.

ii. Three of these give the location of the electron, and the fourth gives the orientation of the electron within the orbital

iii. Definitions of numbers

quantum numbers (*n*, *l*, *m*_{*l*}, *m*_s)

principal quantum number n

n = 1, 2, 3, 4,

distance of e⁻ from the nucleus

3*s*

quantum numbers: (n, l, m_{h}, m_{s})

angular momentum quantum number / for a given value of n, l = 0, 1, 2, 3, ... n-1

	$I \equiv 0$	Sorbital
// = 1, / = 0	/= 1	<i>p</i> orbital
n = 2, l = 0 or 1	/= 2	d orbital
n = 3, I = 0, 1, or 2	/= 3	<i>f</i> orbital

Shape of the "volume" of space that the *e* occupies

I = 0 (*s* orbitals)

3s

I = 1 (*p* orbitals)

I = 2 (*d* orbitals)

quantum numbers: (n, l, m, m_s)

magnetic quantum number m_{l}

for a given value of / *m*_/ = -/,, 0, +/

if l = 1 (p orbital), $m_l = -1, 0, \text{ or } 1$ if l = 2 (d orbital), $m_l = -2, -1, 0, 1, \text{ or } 2$

orientation of the orbital in space

*m*₁ = -1, 0, **or** 1

3 orientations is space

*m*₁ = -2, -1, 0, 1, **or** 2

5 orientations is space

 (n, l, m_{l}, m_{s}) S Ν spin quantum number m_s $m_{\rm s} = +\frac{1}{2} \, {\rm or} \, -\frac{1}{2}$ S $m_{\rm s} = +\frac{1}{2}$ $m_{\rm s} = -\frac{1}{2}$ $m_s = -\frac{1}{2}$ Oven Atom beam $m_s = +\frac{1}{2}$ Detecting screen Magnet 10 Slit screen

quantum numbers: (n, l, m_{h}, m_{s})

Existence (and energy) of electron in atom is described by its *unique* wave function ψ .

Pauli exclusion principle - no two electrons in an atom can have the same four quantum numbers.

Each seat is uniquely identified (E, R12, S8) Each seat can hold only one individual at a time

n	l	$m{m}_\ell$	Number of Orbitals	Atomic Orbital Designations
1	0	0	1	1 <i>s</i>
2	0	0	1	2s
	1	-1, 0, 1	3	$2p_x, 2p_y, 2p_z$
3	0	0	1	35
	1	-1, 0, 1	3	$3p_x, 3p_y, 3p_z$
	2	-2, -1, 0, 1, 2	5	$3d_{xy}, 3d_{yz}, 3d_{xz},$
				$3d_{x^2-y^2}$, $3d_{z^2}$
•	•			
	2	-2, -1, 0, 1, 2	5	$3d_{xy}, 3d_{yz}, 3d_{xz}, 3d_{xz}, 3d_{x^2-y^2}, 3d_{z^2}$

TABLE 7.2 Relation Between Quantum Numbers and Atomic Orbitals

quantum numbers: (n, l, m_{h}, m_{s})

Shell – electrons with the same value of *n*

Subshell – electrons with the same values of *n* and /

Orbital – electrons with the same values of n, l, and m_l

How many electrons can an orbital hold?

If *n*, *l*, and m_l are fixed, then $m_s = \frac{1}{2}$ or $-\frac{1}{2}$

 $\psi = (n, l, m_{l}, \frac{1}{2}) \text{ or } \psi = (n, l, m_{l}, -\frac{1}{2})$

An orbital can hold 2 electrons

How many 2*p* orbitals are there in an atom?

How many electrons can be placed in the 3d subshell?

If
$$l = 2$$
, then $m_l = -2$, -1 , 0 , $+1$, or $+2$
 $3d$ 5 orbitals which can hold a total of $10 e^{-1}$
 $1 = 2$

The Energies of Orbitals Energy of orbitals in a *single* electron atom Energy only depends on principal quantum number *n*

Energy of orbitals in a *multi*-electron atom Energy depends on *n* and *I*

"Fill up" electrons in lowest energy orbitals (*Aufbau principle*)

The most stable arrangement of electrons in subshells is the one with the greatest number of parallel spins (*Hund's*

Order of orbitals (filling) in multi-electron atom

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s

Electron configuration is how the electrons are distributed among the various atomic orbitals in an atom.

Orbital diagram

Η

What is the electron configuration of Mg?

Mg 12 electrons 1s < 2s < 2p < 3s < 3p < 4s $1s^22s^22p^63s^2$ 2 + 2 + 6 + 2 = 12 electrons Abbreviated as [Ne]3s² [Ne] $1s^22s^22p^6$

What are the possible quantum numbers for the last (outermost) electron in Cl?

Cl 17 electrons 1s < 2s < 2p < 3s < 3p < 4s $1s^22s^22p^63s^23p^5$ 2 + 2 + 6 + 2 + 5 = 17 electrons Last electron added to 3p orbital

n = 3 /= 1 m_{1} = -1, 0, or +1 $m_{s} = \frac{1}{2}$ or $-\frac{1}{2}$ 21

Distilling Information

1. Label the s, p, d, and f blocks in Table 3-4.

e.

23

VALENCE ELECTRONS

N	a	m	e
	~		

The valence electrons are the electrons in the outermost principal energy level. They are always "s" or "s and p" electrons. Since the total number of electrons possible in s and p sublevels is eight, there can be no more than eight valence electrons.

Determine the number of valence electrons in the atoms below.

		Example:	carbon Electron configura Carbon has 4 vale	tion is $1s^2 \ 2s^2 \ 2p^2 \ .$ ence electrons.	
1.	fluorine		11.	lithium	
2.	phosphorus		12.	zinc	
3.	calcium		13.	carbon	
4.	nitrogen		14.	iodine	
5.	iron	-	15.	oxygen	
6.	argon		16.	barium	
7.	potassium _		17.	aluminum	
8.	helium		18.	hydrogen	
9.	magnesium		19.	xenon	
10.	sulfur		20.	copper	

CHAPTER 5

Section 5.3 Electron Configurations In your textbook, read about ground-state electron configurations.

Use each of the terms below just once to complete the passage.

Aufbau principle Iowest	electron configuration Pauli exclusion principle	ground-state electron configuration spins	Hund's rule stable
The arrangement	of electrons in an atom is call	ed the atom's	
(1)	Electrons in a	n atom tend to assume the arrangement	
that gives the atom th	e (2)	possible energy. This arrangemen	t
of electrons is the mo	st (3)	arrangement and is called the	
atom's (4)	- <u></u>		
Three rules define	e how electrons can be arrang	ed in an atom's orbitals. The	
(5)	states that eacl	h electron occupies the lowest energy	
orbital available. The	(6)	states that a maximum of two	
electrons may occupy	a single atomic orbital, but o	nly if the electrons have opposite	
(7)	. (8)	states that single	
electrons with the sam	ne spin must occupy each equ	al-energy orbital before additional	
electrons with opposi	te spins occupy the same orbi	tals.	
	· • •		

Complete the following table.

Element	Atomic Number		Orbitals			Electron Configuration	
	-	1s	2s	2p _x	2p _y	2p _z	
9. Helium							1s ² .
10.	. 7						
11. Neon		↑ ↓	Î↓	↑↓	$\uparrow\downarrow$	Î↓	

CHAPTER 5 STUDY GUIDE FOR CONTENT MA Section 5.3 continued Answer the following questions. 12. What is germanium's atomic number? How many electrons does germanium have? 13. What is noble-gas notation, and why is it used to write electron configurations?	STER
 Section 5.3 continued Answer the following questions. 12. What is germanium's atomic number? How many electrons does germanium have? 13. What is noble-gas notation, and why is it used to write electron configurations? 	
 Answer the following questions. 12. What is germanium's atomic number? How many electrons does germanium have? 13. What is noble-gas notation, and why is it used to write electron configurations? 	
 12. What is germanium's atomic number? How many electrons does germanium have? 13. What is noble-gas notation, and why is it used to write electron configurations? 	
13. What is noble-gas notation, and why is it used to write electron configurations?	
· · · · · · · · · · · · · · · · · · ·	

14. Write the ground-state electron configuration of a germanium atom, using noble-gas notation.

In your textbook, read about valence electrons.

Circle the letter of the choice that best completes the statement or answers the question.

15. The electrons in an atom's outermost orbitals are called **a.** electron dots. **b.** quantum electrons. **c.** valence electrons. **d.** noble-gas electrons. 16. In an electron-dot structure, the element's symbol represents the **a.** nucleus of the noble gas closest to the atom in the periodic table. **b.** atom's nucleus and inner-level electrons. c. atom's valence electrons. **d.** electrons of the noble gas closest to the atom in the periodic table. 17. How many valence electrons does a chlorine atom have if its electron configuration is [Ne]3s²3p⁵? **a**. 3 **b.** 21 **c.** 5 **d.** 7 **18.** Given boron's electron configuration of $[He]2s^22p^1$, which of the following represents its electron-dot structure? d. Be **c**. **B**: b. •B.• a. •Be• **19.** Given beryllium's electron configuration of $1s^22s^2$, which of the following represents its electron-dot structure? d. Be **c.** B: a. Be**b**. •B• **20.** Which electrons are represented by the dots in an electron-dot structure? **a.** valence electrons c. only s electrons **b.** inner-level electrons **d.** both a and c

26