

Fundamentals of Organic Chemistry CHEM 109

For Students of Health Colleges

Credit hrs.: (2+1)

King Saud University

College of Science, Chemistry Department

CHEM 109

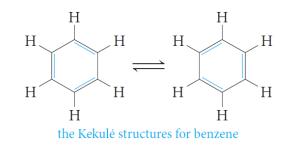
CHAPTER 3. AROMATIC HYDROCARBONS

Aromatic Hydrocarbons

- Originally called aromatic due to fragrant odors, although this definition seems
 - inaccurate as many products posses distinctly non-fragrant smells!
- Currently a compound is said to be aromatic if it has benzene-like in its properties.

• Benzene is the parent hydrocarbon of aromatic compounds, because of their special chemical properties.

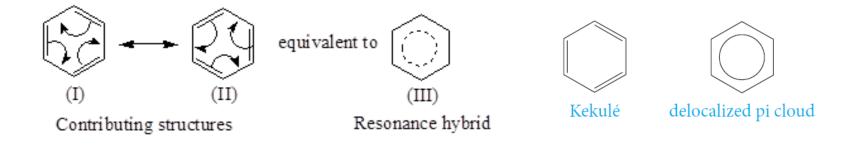
The Structure of Benzene Ring


• Molecular formula = C_6H_6

The carbon-to-hydrogen ratio in benzene, suggests a highly unsaturated structure.

• Benzene reacts mainly by substitution.

It does not undergo the typical addition reactions of alkenes or alkynes.


- Kekulé Structure for Benzene
 - He suggested that
 - six carbon atoms are located at the corners of a regular hexagon, with one hydrogen atom attached to each carbon atom.
 - single and double bonds alternate around the ring (conjugated system of double bonds) and exchange positions around the ring.

The Structure of Benzene Ring

Resonance Model for Benzene.

- Benzene is planar.
- All of the carbon-carbon bond lengths are identical: 1.39 A°, intermediate between typical single (1.54A°) and double (1.34 A°) carbon-carbon bond lengths.
- Each carbon is therefore sp2-hybridized.
- \circ Bond angles of 120°.

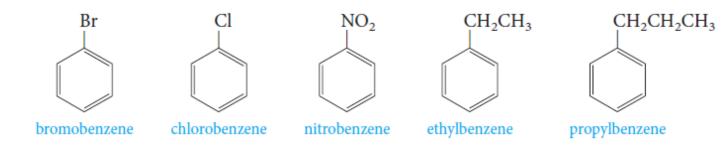
Aromatic Character (Aromaticity)

To be classified as aromatic, a compound must have:

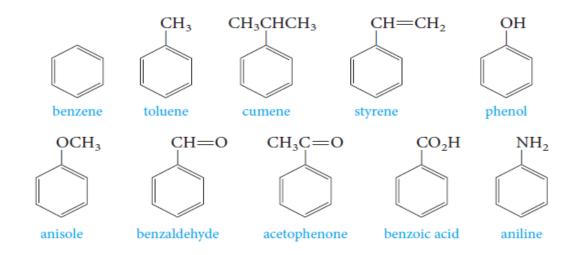
- Optimize Cyclic structure
- Occlic structure contains what looks like a continuous system of alternating double and single bonds.
- 3 Aromatic compounds must be planar
- **4** Fulfill Huckel rule

The number of \prod electrons in the compound = (4n + 2)

Where (n = 0, 1, 2, 3, and so on).


Aromatic Character (Aromaticity)

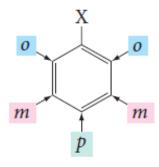
Structure and name of aromatic compound 4n + 2 n 6 Pyridine Furan Thiophene Benzene Pyrrole **Examples** 4n+2 =10 2 2 8 4 2 n= 1.5 0 0.5 0 4n+2 =4 6 4 4 n= 0.5 0.5 1 0.5

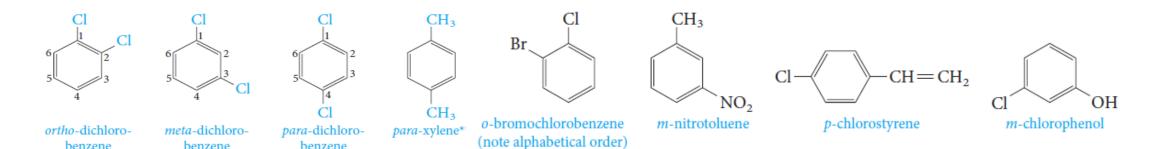

Nomenclature of Aromatic Compounds

7

 Monosubstituted benzenes that do not have common names accepted by IUPAC are named as derivatives of benzene.

Common names are accepted by IUPAC (parent compounds).

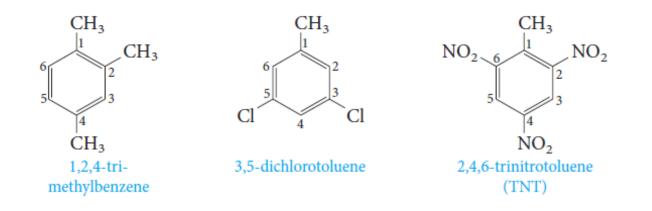

Disubstituted Benzenes


Nomenclature of Aromatic Compounds

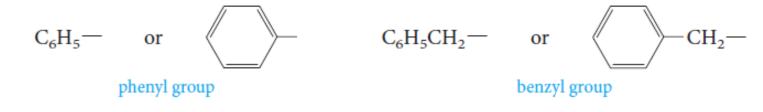
• When two substituents are present, three isomeric structures are possible.

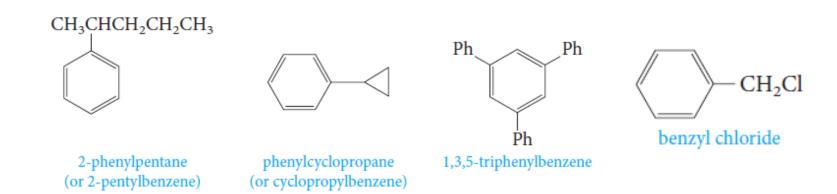
- They are designated by the prefixes; ortho- (o-), meta- (m-) and para- (p-).
- If substituent X is attached to carbon 1;
 - o- groups are on carbons 2 and 6,
 - *m*-groups are on carbons 3 and 5, and
 - p- groups are on carbon 4.

• Examples;



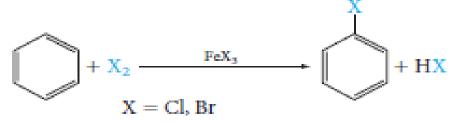
Polysubstituted Benzenes

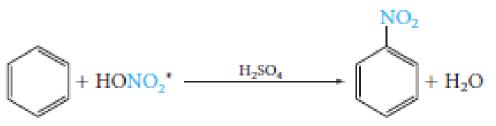

- 9
- When more than two substituents are present, their positions are designated by numbering the ring.

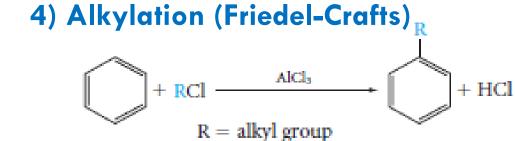

Nomenclature of Aromatic Compounds

10

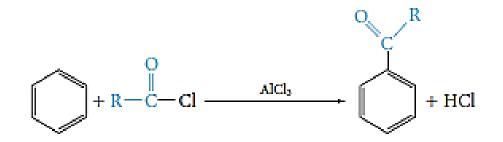
Two groups with special names occur frequently in aromatic compounds; the phenyl group and the benzyl group.


• Examples;

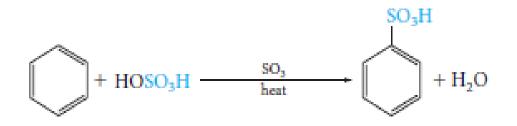

Electrophilic Substitution Reactions Reactions of Benzene



1) Halogenation

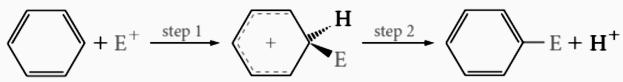


2) Nitration

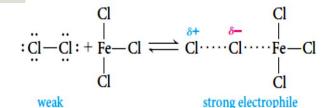


5) Acylation (Friedel-Crafts)

3) Sulfonation

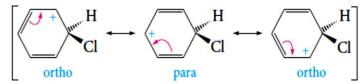


The <u>Mechanism</u> of Electrophilic Substitution Reactions



12

We can generalize this two-step mechanism for all the electrophilic aromatic substitutions.

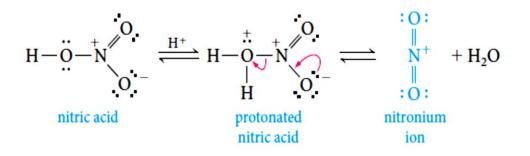

1) Halogenation

electrophile

$$+ Cl - Cl + FeCl_3 \longrightarrow H + FeCl_4 + Fe$$

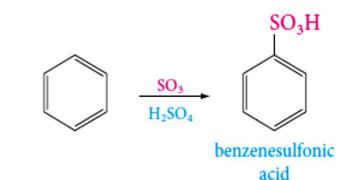
a benzenonium ion (a carbocation)

composite representation of the benzenonium ion resonance hybrid



The <u>Mechanism</u> of Electrophilic Substitution Reactions

Reactions of Benzene


2) Nitration

In aromatic nitration reactions, the sulfuric acid catalyst protonates the nitric $H-\ddot{O}-\dot{N}$ acid, which then loses water to generate the nitronium ion (NO_2^+) , which contains a positively charged nitrogen atom.

3) Sulfonation

We use either concentrated or fuming sulfuric acid, and the electrophile may be sulfur trioxide, SO_3 , or protonated sulfur trioxide, ${}^+SO_3H$.

Electrophilic Aromatic Substitution Reactions

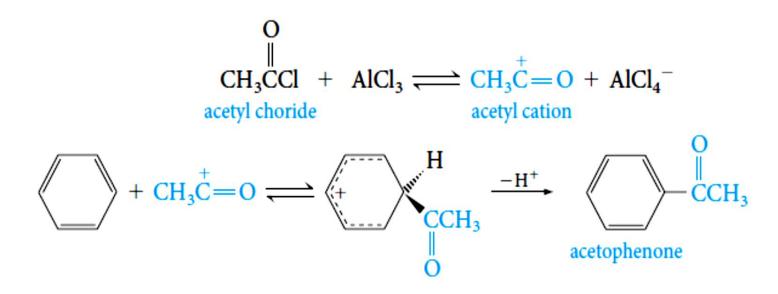
4) Friedel–Crafts Alkylation

The electrophile is a carbocation, which can be formed either by removing a halide ion from an alkyl halide with a Lewis acid catalyst (for example, $AICI_3$).

$$Cl \rightarrow Al + ClCH_{2}CH_{3} \Longrightarrow Cl \rightarrow Al \rightarrow Cl + CH_{2}CH_{3} \leftrightarrow CH_{2}=CH_{2} \quad (4.20)$$

$$Cl \rightarrow Cl \rightarrow Cl + CH_{2}CH_{3} \leftrightarrow CH_{2}=CH_{2} \quad (4.20)$$

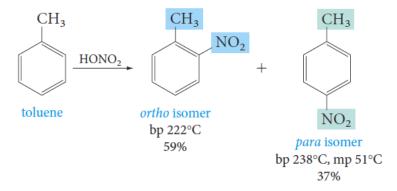
$$Cl \rightarrow CH_{2}CH_{3} \rightarrow CH_{3}CH_{3} \rightarrow CH_{3} \rightarrow CH_{3}CH_{3} \rightarrow CH_{3} \rightarrow CH_{3}$$

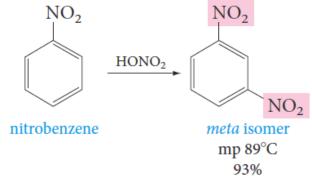


Electrophilic Aromatic Substitution Reactions

5) Friedel–Crafts Acylation

15


The electrophile is an acyl cation generated from an acid derivative, usually an acyl halide. The reaction provides a useful general route to aromatic ketones.



Disubstituted Benzenes: Orientation

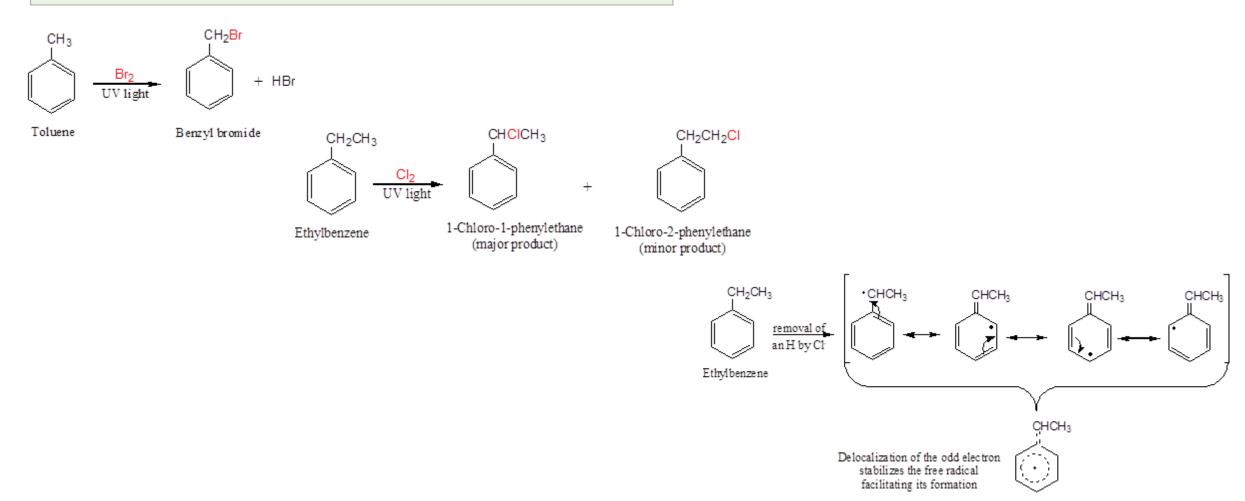
- 16
- Substituents already present on an aromatic ring determine the position taken by a new substituent.
- **Example**; nitration of toluene gives mainly a mixture of o- and p-nitrotoluene.

• On the other hand, nitration of nitrobenzene under similar conditions gives mainly the *meta* isomer.

Disubstituted Benzenes: Orientation& Reactivity

Directing and Activating Effects of Common Functional Groups

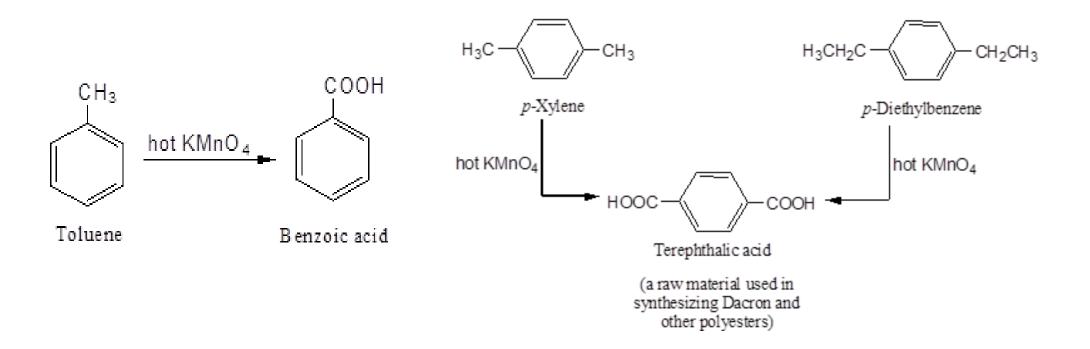
17


- Substituents that release electrons to the ring will activate the ring toward electrophilic substitution.
- Substituents that withdraw electrons from the ring will deactivate the ring toward electrophilic substitution.

	Substituent group	Name of group	
Ortho, Para-Directing	$-\ddot{N}H_{2}, -\ddot{N}HR, -\ddot{N}R_{2}$ $-\ddot{O}H, -\ddot{O}CH_{3}, -\ddot{O}R$ $\overset{O}{=} HC -R$ $-CH_{3}, -CH_{2}CH_{3}, -R$	amino hydroxy, alkoxy acylamino alkyl	Activating
	-F∶, -Cl∶, -Br∶, -I∶	halo	
Meta-Directing	:0: :0: -C-R -C-OH	acyl, carboxy	
	:0: :0: -CNH ₂ -C-OR	carboxamido, carboalkoxy	D
	:0: :0:	sulfonic acid	Deactivating
	-C≡N:	cyano	
		nitro	

Side-Chain Reactions of Benzene-Derivatives

1. Halogenation of an Alkyl Side Chain



Side-Chain Reactions of Benzene-Derivatives

2. Oxidation of an Alkyl Side Chain

- Conversion into a carboxyl group, -COOH, by treatment with hot potassium permanganate.
- Regardless the length of the alkyl chain, the product is always the same.

