IDENTIFICATION OF GLASSWARE, PH METER, SPECTROPHOTOMETER

## AIMS

- Identify different glassware and the accuracy of them
- To be familiar with the use of pipetting technique
- To learn how to handle the ph meter and to measure ph values
- To learn how to handle the spectrophotometer


## GLASSWARE

- 1-Conical flasks and beakers:
- They are used for mixing, transporting and reacting,
- but not for accurate volume measurements.


Conical

flasks

- 2-Graduated cylinders:
- They are for general purpose use, but not for quantitative analysis.
- If greater accuracy is needed, use a pipette or volumetric flask.

- 3-Burettes:
- It is used to deliver solution in precisely-measures variable volumes. Burettes are used primarily for titration
- 4-Volumetric flasks: It is used to make up a solution of fixed volume very accurately.

- 4) Pipettes: A pipette is used to measure small amounts of solution very accurately. Two types of pipettes commonly used are transfer pipettes and measuring pipettes.


## PIPETTING TECHNIQUES


designed to deliver accurately a fixed volume of liquid
Not graduated
consist of a cylindrical bulb joined
at both ends to narrowed glass
tubing
More accurate than measuring pipettes
Non-blown out


Measuring pipettes(graduated)

- Graduated
- Some are blown out
- There are two types: Mohr and serological


## MEASURING PIPETTES(GRADUATED)



## SMALLEST DIVISION OF GRADUATED PIPETTE

- How to know the smallest division of a pipette:


Smallest division: 0.1 ml Smallest division: 0.2 ml

## HOW TO USE PIPETTES

- The pipette first should be washed with water
- Then rinsed with a little of the solution to be used. Why?
- The bottom of the curved surface is read at eye level and the volume measurement is read to the proper number of significant digits

- The solution is allowed to drain into the appropriate vessel with the jet of the pipette touching the wall of the vessel


## PH METER

- Hydrogen ion concentration of many solution is low and difficult to measure accurately.
- So, the term pH introduced as a way of expressing hydrogen ion concentration.
- PH define as the negative logarithm of the hydrogen ion concentration.
- $\mathrm{PH}=-\log 10[\mathrm{H}+]$
- Since the PH determines many important aspects of the structure and activity of biological macromolecules and thus of the behavior of the cell and organisms .
Note: PH range value (0-14) ,, the higher PH number, the lower the hydrogen ion concentration and vice versa..

- There are many ways in biochemical laboratory to measure PH value such as ; and
- litmus s paper,
- a field kit
- PH meter. The most accurate and reliable method is

- The glass electrode

Note: before use it needs to be calibrated

## SPECTROPHOTOMETER

- spectrophotometer is instrument used to measure the intensity of light at a given wavelength that is transmitted or absorbed by a sample.

*Wavelength in this instrument divided into: -Invisible range(ultraviolet) from 100 to 360 nm [Quartz cuvette are used] -Visible range ( $400-700 \mathrm{~nm}$ ) [Glass or plastic cuvette are used] Blank: contain everything except the compound to be measure.


## METHOD

- Four parts:
- 1-Examine the 3 pipettes $A, B$, and $C$ record their types and smallest division

| Pipette | Type | Smallest division |
| :--- | :--- | :--- |
| A |  |  |
| B |  |  |
| C |  |  |

- Using distilled water, pipette a

|  | Weight of the <br> beaker | Weight of beaker <br> +water | Weight of water |
| :--- | :--- | :--- | :--- |
| 1-graduate <br> pipette |  |  |  |
| 2-measuring <br> cylinder |  |  |  |

- 1-standardize the PH meter by placing the electrode in a solution of known PH(PH 4, 7, 9) . 2-Wash the electrode with distilled water and dry by tissue then put it into sample solution A \& B , read PH. Note: After use the electrode you should storaae it in distilled water and never be allowed to dry out .IF the electrode ge.

| Solution | PH Value |
| :--- | :--- |
| Standard PH 4 |  |
| Standard PH 7 |  |
| Standard PH 9 |  |
| A |  |
| B |  |

-     - Adjust the spectrophotometer to zero using blank solution in the cuvette and read the absorbance of standard solution and the solution of unknown concentration at 280 nm . - Read your result in the table below:

| NO. | Solution | Absorbance |
| :--- | :--- | :--- |
| $\mathbf{1}$ | Standard solution <br> $(0.5 \mathrm{gm} / 100 \mathrm{ml}$ of BSA $)$ |  |
| $\mathbf{2}$ | Solution of Unknown concentraton |  |

-     - Calculate the concentration of unknown solution from the following formula: Au $x$ Cs As Where Au= Absorbance of the solution of unknown concentration As= Absorbance of the solution of standard solution $\mathrm{Cs}=$ concentration of standard solution
-     - Concentration of unknown solution is =

