KSU – Chemical Engineering Department ChE 320 (Chemical Reactor Engineering) – TUT #9

Name: ID: SN:

1. The catalytic reaction $A + C \rightarrow D$, can be adequately described by the following mechanism:

 $A \leftrightarrow B$ (with k_1 = forward rate constant, k_{-1} = backward rate constant)

 $B + C \rightarrow D$ (with rate constant k_2)

Use the quazi (pseudo) steady state approach to find the rate of formation of D.

2. Consider the following liquid phase catalytic reaction: $A + B \rightarrow C$. The reaction has been found to follow the mechanism:

 $A + D \rightarrow AD$ (very fast)

$$AD + B \rightarrow BAD$$

 $BAD \rightarrow D + C$ (very fast)

The rate of reaction is given by: $-r_A = kC_AC_{AD}$ (mol/m³.s). $C_{A0} = 60$ mol/m³, $C_{D0} = 30$ mol/m³, $k = 2.5*10^{-5}$ m³/mol.s

Calculate the rate for this reaction at 60% conversion of A.