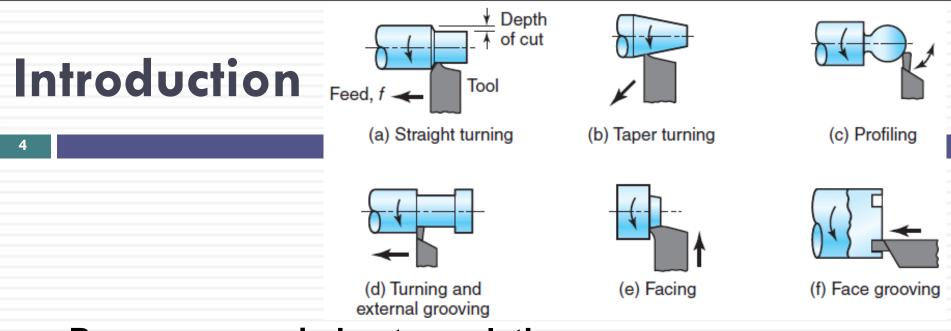
Manufacturing Processes (2), IE-352 Ahmed M El-Sherbeeny, PhD Spring 2018

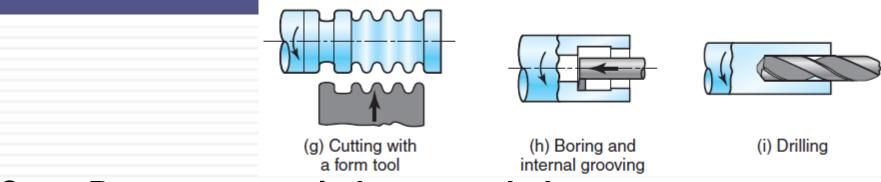
Manufacturing Engineering Technology in SI Units, 6th Edition Chapter 23: Machining Processes: Turning and Hole Making – Part A (Turning)


Chapter Outline

1. Introduction

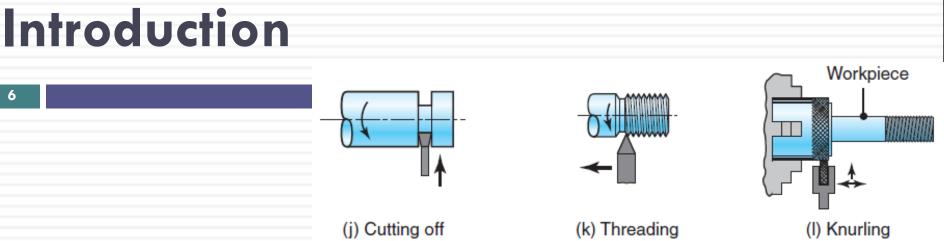
- 2. The Turning Process
- 3. Lathes and Lathe Operations
- 4. Boring and Boring Machines
- 5. Drilling, Drills, and Drilling Machines
- 6. Reaming and Reamers
- 7. Tapping and Taps

- Machining processes discussed here:
 - With capability of producing parts that are round in shape
 - Most basic is turning: part is rotated while it is being machined
- Lathe (or by similar machine tools):
 - Considered to be the oldest machine tools
 - Carry out turning processes (see next 4 slides):
 - Highly simple, versatile machines
 - Requires a skilled machinist
 - Inefficient for repetitive operations and for large production
 - All parts are circular (property known as axisymmetry*)
 - Processes produce a wide variety of shapes
 - Speeds range from moderate to high speed machining


Processes carried out on a lathe:

- Turning (figures a-d):
 - Produce straight, conical, curved, or grooved workpieces
 - Examples: shafts, spindles, pins
- **Facing** (figure e):
 - Produce flat surface at end of part and \perp to its axis
- Face grooving (figure f):
 - Produce grooves for applications such as O-ring seats

o' ring gasket


seal seat type 15

5

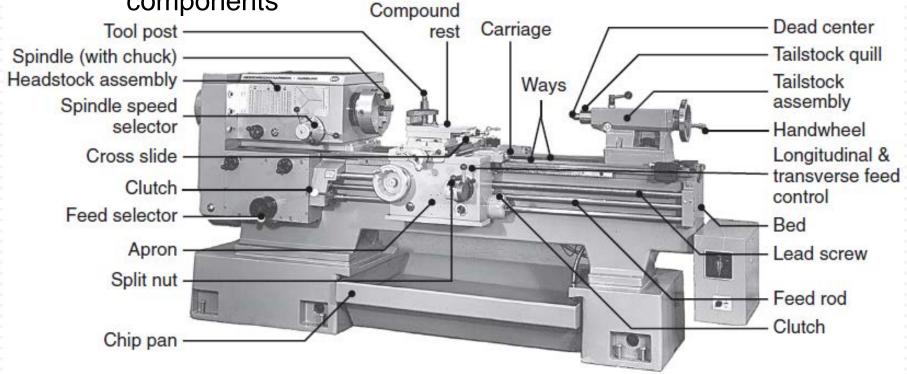
Cont. Processes carried out on a lathe:

- Cutting with forms tools (figure g):
 - Produce axisymmetric shapes (functional, aesthetic purposes)
- Boring (figure h):
 - Enlarge hole/cylindrical cavity made by previous process:
 - Produce circular internal grooves (figure h)
- Drilling (figure i):
 - Produce a hole
 - May be followed by boring to improve dim. acc./ surface finish

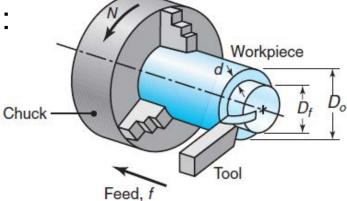
Cont. Processes carried out on a lathe:

- Parting (figure j): AKA cutting off
 - Cut a piece from the end of a part
 - Used with production of blanks for additional processing/parts
- Threading (figure k):
 - Produce external or internal threads
- Knurling (figure I):

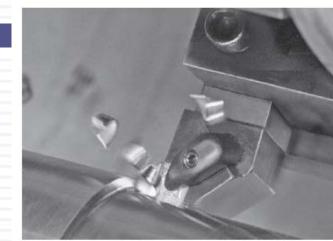
- Produce regularly shaped roughness on cylindrical surfaces
- Example: making knobs, handles (remember micrometer?)

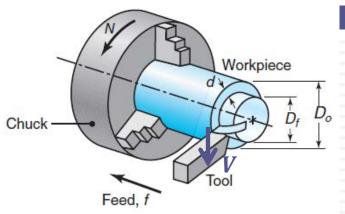

7

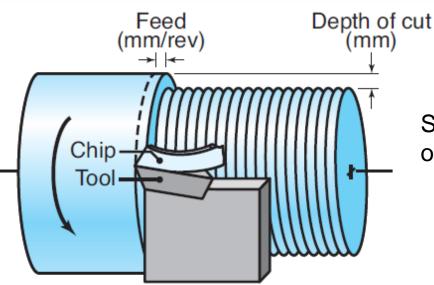
General Characteristics of Machining Processes and Typical Dimensional Tolerances


		Typical dimensional
Process	Characteristics	tolerances, $\pm mm$
Turning	Turning and facing operations on all types of materials, uses	Fine: 0.025–0.13
	single-point or form tools; engine lathes require skilled labor; low	Rough: 0.13
	production rate (but medium-to-high rate with turret lathes and	
	automatic machines) requiring less skilled labor	
Boring	Internal surfaces or profiles with characteristics similar to turning;	0.025
	stiffness of boring bar important to avoid chatter	
Drilling	Round holes of various sizes and depths; high production rate; labor	0.075
	skill required depends on hole location and accuracy specified; requires	
	boring and reaming for improved accuracy	
Milling	Wide variety of shapes involving contours, flat surfaces, and slots; versatile; low-to-medium production rate; requires skilled labor	0.013-0.025
Planing	Large flat surfaces and straight contour profiles on long workpieces, low-quantity production, labor skill required depends on part shape	0.08-0.13
Shaping	Flat surfaces and straight contour profiles on relatively small workpieces	GEAR SHAPING PROCESS 0.05–0.08
	low-quantity production; labor skill required depends on part shape	
Broaching	External and internal surfaces, slots, and contours; good surface finish;	0.025-0.15
	costly tooling; high production rate; labor skill required depends on	
	part shape	
Sawing	Straight and contour cuts on flat or structural shapes; not suitable for	0.8
	hard materials unless saw has carbide teeth or is coated with diamond; low production rate; generally low labor skill	

Lathes:


- Available in different designs, sizes, capacities, computercontrolled features
- Below: general view of typical lathe, showing various components


- 9
- Turning (see below) is performed at various:
 - 1. Rotational speeds, N, of workpiece clamped in a spindle
 - 2. Depths of cut, d
 - 3. Feeds, f
- Change in parameters depends on:
 - workpiece materials
 - cutting-tool materials
 - surface finish
 - dimensional accuracy
 - characteristics of the machine tool


Basic turning operation

a) Turning operation (showing insert and chip removal)

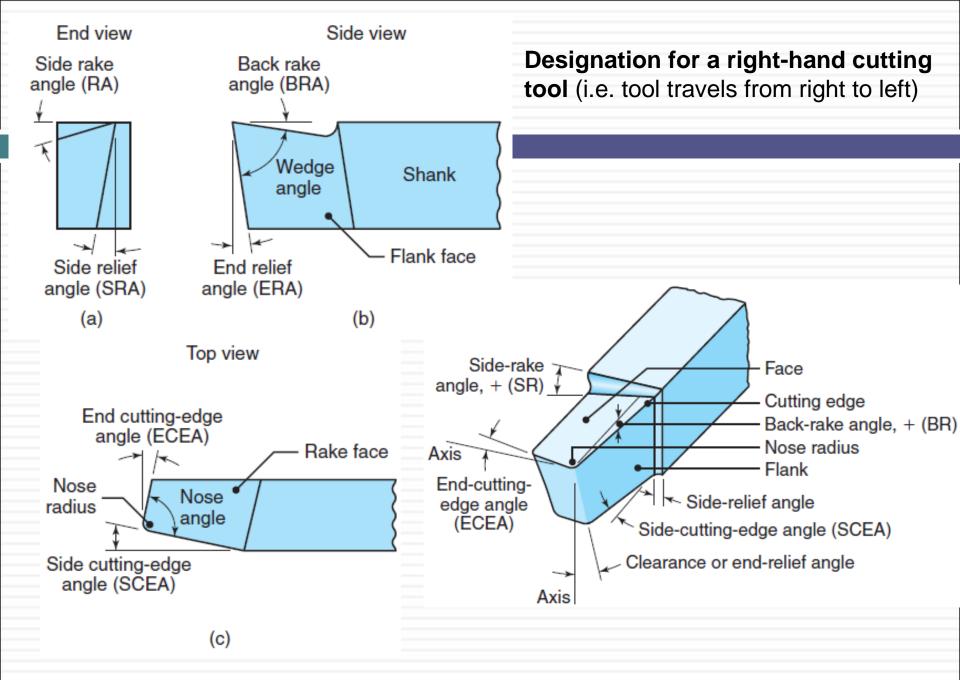
b) Basic turning operation showing: N (rev/min), d, f; Note, V is surface speed of workpiece at tool tip

Schematic of the turning operation

Turning operations:

- Majority: simple single-point cutting tools (right-hand cutting tool)
- Each group of workpiece materials has <u>optimum tool angles</u>
- Process parameters ⇒ direct influence on machining processes
 & optimized productivity (Chapter 21)
- Topics discussed here:
 - Tool geometry
 - Material removal rate (MRR)
 - Forces in turning
 - Approximating turning using the orthogonal model
 - Roughing and finishing cuts
 - Tool materials, feeds, and cutting speeds
 - Cutting Fluids

Tool Geometry

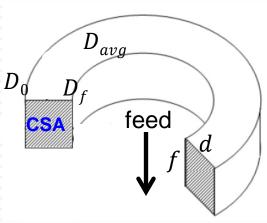

- **Rake angle** (aka back rake angle, BRA):
 - controls both direction of chip flow and strength of tool tip
 - +ve RA improves cutting operation (reduced forces, temperature),
 - but result in small angle @ tool tip ⇒ premature chipping + failure (depending on tool toughness; <u>compare carbide vs HSS</u>)
- □ Side rake angle: typically from -5° to 5°
- Cutting-edge angle:
 - affects chip formation, tool strength and cutting forces
 - typically: around 15°

Cont. Tool Geometry

- Relief angle:
 - controls interference and rubbing at tool—workpiece interface
 - if too large \Rightarrow tool may chip off
 - if too small \Rightarrow flank wear may be too large
 - typically: 5°

Nose radius:

- affects surface finish and tool-tip strength
- smaller nose radius (i.e. sharp tool) ⇒ rougher workpiece S.F. and lower tool strength
- larger nose radius (i.e. dull tool) \Rightarrow tool chatter


15

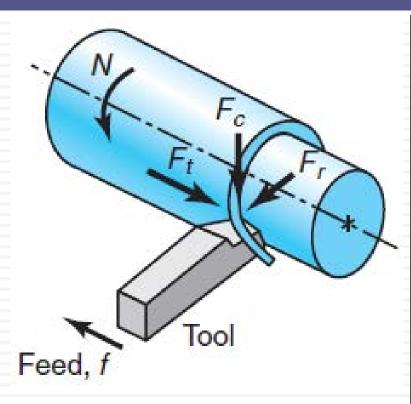
General	Recommendations	for Tool	Angles in	Turning
---------	-----------------	----------	-----------	---------

		High-speed steel			Carbide inserts					
Material	Back rake	Side rake	End relief	Side relief	Side and end cutting edge	Back rake	Side rake	End relief	Side relief	Side and end cutting edge
Aluminum and magnesium alloys	20	15	12	10	5	0	5	5	5	15
Copper alloys	5	10	8	8	5	0	5	5	5	15
Steels	10	12	5	5	15	-5	-5	5	5	15
Stainless steels	5	8-10	5	5	15	-5-0	-5-5	5	5	15
High-temperature alloys	0	10	5	5	15	5	0	5	5	45
Refractory alloys	0	20	5	5	5	0	0	5	5	15
Titanium alloys	0	5	5	5	15	-5	-5	5	5	5
Cast irons	5	10	5	5	15	-5	-5	5	5	15
Thermoplastics	0	0	20-30	15-20	10	0	0	20-30	15-20	10
Thermosets	0	0	20-30	15-20	10	0	15	5	5	15

Material-removal Rate

- This is vol. of material removed / unit time [mm³/min]
- For each revolution:
 - Ring-shaped layer of material is removed
 - Cross section of layer (see right):
 - Distance tool travels in one revolution: feed, f
 - Depth of cut, d, where $d = (D_0 D_f)/2$
 - $\Rightarrow CSA = f * d [mm^2/rev]$
 - Average diameter of the ring:
 - $\square \quad D_{avg} = (D_0 + D_f)/2$
 - Note, for light cuts on large-*D* workpieces: $D_{avg} = D_0$
 - Average circumference of ring: πD_{avg} [mm]
 - \Rightarrow Volume of ring = CSA $*\pi D_{avg} = \pi D_{avg} df [mm^3/rev]$

Cont. Material-removal Rate


- Expression for MRR:
 - We established, one revolution: *Vol.removed* = $\pi D_{avg} df$
 - So given: *N*, rotational speed of workpiece [*rev/min*] or [*rpm*]
 - $\square \implies MMR = \pi D_{avg} df N ([mm^3/rev] * [rev/min] = [mm^3/min])$
 - Also, given: V, surface cutting speed
 - V = (circumferential distance traveled / rev.) * (# of rev / min)
 - $\blacksquare \Rightarrow V = \pi D_{avg} N \ [mm/min]$
 - $\square \implies MMR = dfV \quad (Q: MMR \text{ has same units as above?})$

Cont. Material-removal Rate

- Expression for cutting time:
 - Given, *l*: distance traveled [*mm*]
 - Also, tool travels at feed rate
 - v = fN ([mm/rev] * [rev/min] = [mm/min])
 - But also: *speed* = *distance* / *time* = l / t; or: t = l/v
 - $\Box \Rightarrow t = l/fN$
 - Note,
 - *t* does not include time for *tool approach* and *retraction*,
 - Machine tools are designed/built to minimize these times
 - Equations/terminology mentioned: summarized in <u>Table 23.3</u>

Forces in Turning

- 3 principal forces acting on cutting tool:
 - **D** Cutting force, F_c
 - Thrust force, F_t
 - **\square** Radial force, F_r
- Important for:
 - Design of machine tools
 - Precision-machining operations
 - Preventing deflection, vibrations, chatter of tools resulting from forces

20

Cont. Forces in Turning

- \Box Cutting force, F_c :
 - Acts downward on tool tip \Rightarrow
 - Deflects tool *downward*,
 - Deflects workpiece upward
 - Calculated using energy per unit volume (table)

Approximate Range of Energy Requirements in Cutting Operations at the Drive Motor of the Machine Tool (for Dull Tools, Multiply by 1.25)

	$\frac{\text{Specific energy}}{\text{W} \cdot \text{s/mm}^3}$
Material	w·s/mm ⁻
Aluminum alloys	0.4–1
Cast irons	1.1-5.4
Copper alloys	1.4-3.2
High-temperature alloys	3.2-8
Magnesium alloys	0.3-0.6
Nickel alloys	4.8-6.7
Refractory alloys	3–9
Stainless steels	2-5
Steels	2–9
Titanium alloys	2–5

Torque on the spindle:

Torque = cutting force * its radius from workpiece

 $\square \Rightarrow Torque = F_c D_{avg}/2 \ [N \cdot m]$

Cont. Forces in Turning

Power required in the turning operation:

- Power = torque * spindle speed
- Given, spindle speed: $\omega = 2\pi N ([rad/rev]^*[rev/min]=[rad/min])$

$$\square \Rightarrow Power = (F_c D_{avg}/2)(2\pi N)$$

- $\square \Rightarrow Power = (F_c) \cdot (\pi D_{avg}N) [N \cdot m/min] \text{ or } [kW = kN \cdot m/s]$
- Note how it is also easy to see that equation above reduces to: $Power = F_c \cdot V$

22

Summary of Turning Parameters and Formulas

- N =Rotational speed of the workpiece, rpm
- f = Feed, mm/rev
- v = Feed rate, or linear speed of the tool along workpiece length, mm/min
 - = fN
- V = Surface speed of workpiece, m/min
 - $= \pi D_o N$ (for maximum speed)
 - $= \pi D_{avg} N$ (for average speed)
- l = Length of cut, mm
- $D_o =$ Original diameter of workpiece, mm
- D_f = Final diameter of workpiece, mm
- D_{avg} = Average diameter of workpiece, mm

$$= (D_o + D_f)/2$$

$$d = \text{Depth of cut, mm}$$

$$= (D_0 - D_f)/2$$

t = Cutting time, s or min

$$= l/fN$$

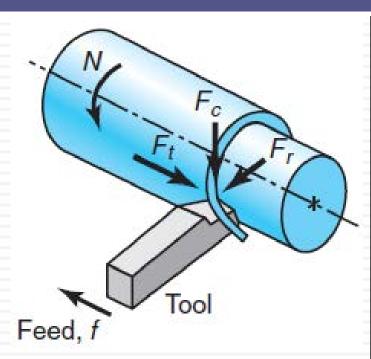
$$MRR = mm^3/min$$

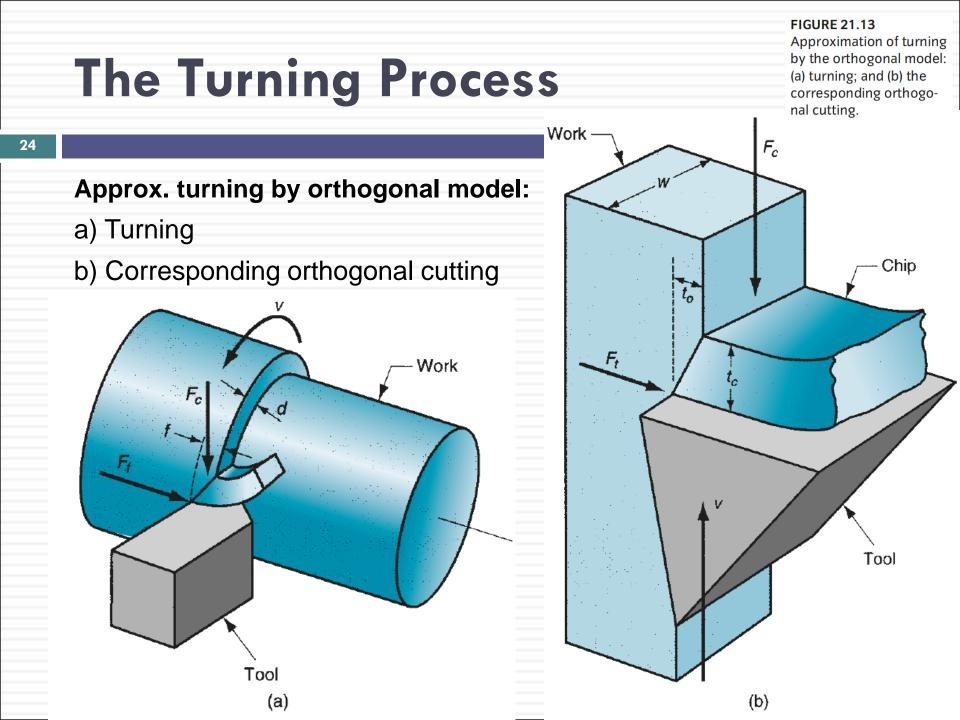
$$= \pi D_{avg} df N$$

Torque = $N \cdot m$

$$= F_c D_{avg}/2$$

Power = kW or hp


= (Torque)(ω), where $\omega = 2\pi N$ rad/min


Note: The units given are those which are commonly used; however, appropriate units must be used and checked in the formulas.

Cont. Forces in Turning

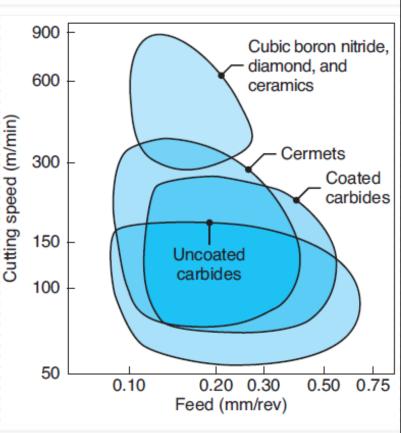
- □ Thrust force F_t :
 - Acts in longitudinal direction
 - Also called feed force, F_f
 (since in same direction as feed)
 - Tends to push tool:
 - To the right
 - Away from the chuck
- □ Radial force, F_r :
 - Acts in radial direction
 - Tends to push tool away from workpiece

□ Note, F_t and F_r are difficult to calculate (usu. determined experimentally)

Approximating turning using the orthogonal model:

TABLE 21.1 Conversi vs. orthogonal cutting.	ion key: turning operation
Turning Operation	Orthogonal Cutting Model
Feed $f =$ Depth $d =$ Cutting speed $v =$ Cutting force $F_c =$ Feed force $F_f =$	Chip thickness before cut t_o Width of cut w Cutting speed v Cutting force F_c Thrust force F_t

Interpretation of cutting conditions is different in 2 cases:


- Chip thickness before cut (t_o) in orthogonal cutting corresponds to feed (f) in turning
- Width of cut (w) in orthogonal cutting corresponds to depth of cut (d) in turning
- Thrust force (F_t) in orthogonal model corresponds to feed force (F_f) in turning
- V and F_c have same meanings in both cases

Roughing and Finishing Cuts

- Usual procedure:
 - one or more *roughing cuts*
 - at high feed rates,
 - large depths of cut (i.e. high MRR)
 - little consideration for dimensional tolerance and surface roughness
- This is followed by:
 - a finishing cut
 - at a lower feed,
 - Iower depth of cut
 - $\square \implies \text{good surface finish}$

Tool Materials, Feeds, and Cutting Speeds

- Large range of applicable cutting speeds, feeds for a variety of tool materials (right)
- Used as general guideline in turning operations
- Specific parameters (d, f, V):
 - Various workpiece materials
 - Various tool materials
 - Different cutting conditions
 - See <u>Table 23.4</u>

TABLE 23.4

General Recommendations for Turning Operations

	5 1							
		General-	General-purpose starting conditions			Range for roughing and finishing		
Workpiece material	Cutting tool	Depth of cut, mm	Feed, mm/rev	Cutting speed, m/min	Depth of cut, mm	Feed, mm/rev	Cutting speed, m/min	
Low-C and	Uncoated carbide	1.5-6.3	0.35	90	0.5-7.6	0.15-1.1	60-135	
free machining steels	Ceramic-coated carbide	"	"	245-275	"	"	120-425	
	Triple-coated carbide	"	"	185-200	"	"	90-245	
	TiN-coated carbide	"	"	105-150	"	"	60-230	
	Al ₂ O ₃ ceramic		0.25	395-440			365-550	
	Cermet		0.30	215-290		"	105-455	
Medium and	Uncoated carbide	1.2-4.0	0.30	75	2.5-7.6	0.15-0.75	45-120	
high-C steels	Ceramic-coated carbide		"	185-230		"	120-410	
	Triple-coated carbide		"	120-150		"	75–215	
	TiN-coated carbide		"	90–200		"	45-215	
	Al ₂ O ₃ ceramic		0.25	335			245-455	
	Cermet		0.25	170–245			105-305	
Cast iron, gray	Uncoated carbide	1.25-6.3	0.32	90	0.4–12.7	0.1-0.75	75–185	
	Ceramic-coated carbide	"	"	200	"	"	120-365	
	TiN-coated carbide	"	"	90-135	"	"	60-215	
	Al ₂ O ₃ ceramic		0.25	455-490		"	365-855	
	SiN ceramic		0.32	730			200–990	

28

TABLE 23.4

General Recommendations for Turning Operations

		General	purpose starting	conditions	Ran	ge for roughing and t	finishing
Workpiece material	Cutting tool	Depth of cut, mm	Feed, mm/rev	Cutting speed, m/min	Depth of cut, mm	Feed, mm/rev	Cutting speed, m/min
Stainless steel,	Triple-coated carbide	1.5-4.4	0.35	150	0.5-12.7	0.08-0.75	75-230
austenitic	TiN-coated carbide			85-160			55-200
	Cermet		0.30	185-215	"		105-290
High-temperature	Uncoated carbide	2.5	0.15	25-45	0.25-6.3	0.1-0.3	15-30
alloys, nickel based	Ceramic-coated		-	4.5	"		20-60
	carbide TiN-coated carbide		-	30-55	"	"	20-85
	Al ₂ O ₃ ceramic			260			185-395
	SiN ceramic			215			90-215
	Polycrystalline cBN			150			120-185
Titanium alloys	Uncoated car bide	1.0 - 3.8	0.15	35-60	0.25-6.3	0.1-0.4	10-75
	TiN-coated carbide			30–60	"		10-100
Aluminum alloys	Uncoated carbide	1.5-5.0	0.45	490	0.25-8.8	0.08-0.62	200-670
Free machining	TiN-coated carbide			550			60-915
	Cermet			490			215-795
	Polycrystalline diamond		-	760	"		305-3050
High silicon	Polycrystalline diamond			530	"		365-915

29

Cutting Fluids

- Recommendations for cutting fluids suitable for various workpiece materials
- □ Note:
 - Aluminum
 - Copper
 - Carbon/ low alloy steels
- Current trend:
 DM/NDM

Material	Type of fluid		
Aluminum	D, MO, E, MO + FO, CSN		
Beryllium	MC, E, CSN		
Copper	D, E, CSN, MO + FO		
Magnesium	D, MO, MO + FO		
Nickel	MC, E, CSN		
Refractory metals	MC, E, EP		
Steels			
Carbon and low-alloy	D, MO, E, CSN, EP		
Stainless	D, MO, E, CSN		
Titanium	CSN, EP, MO		
Zinc	C, MC, E, CSN		
Zirconium	D, E, CSN		

Note: CSN = chemicals and synthetics; D = dry; E = emulsion; EP = extreme pressure; FO = fatty oil; and MO = mineral oil.

EXAMPLE 23.1

Material-removal Rate and Cutting Force in Turning

A 150-mm-long, 12.5-mm-diameter 304 stainless steel rod is being reduced in diameter to 12.0 mm by turning on a lathe. The spindle rotates at *N* 400 rpm, and the tool is travelling at an axial speed of 200 mm/min. Calculate the cutting speed, material-removal rate, cutting time, power dissipated, and cutting force.

Solution

Material-removal Rate and Cutting Force in Turning

The maximum cutting speed is

$$V = \pi D_0 N = \frac{\pi (12.5)(400)}{1000} = 15.7 \text{ m/min}$$

The cutting speed at the machined diameter is

$$V = \pi D_0 N = \frac{\pi (12.0)(400)}{1000} = 15.1 \,\mathrm{m/min}$$

The depth of cut is
$$d = \frac{12.5 - 12.0}{2} = 0.25 \text{ mm}$$

Solution

Material-removal Rate and Cutting Force in Turning

The feed is
$$f = \frac{200}{400} = 0.5 \text{ mm/rev}$$

The material-removal rate is

 $MMR = (\pi)(12.25)(0.25)(0.5)(400) = 1924 \text{ mm}^3/\text{min} = 2 \times 10^{-6} \text{ m}^3/\text{min}$

The actual time to cut is

$$t = \frac{150}{(0.5)(400)} = 0.75 \,\mathrm{mm}$$

Copyright © 2010 Pearson Education South Asia Pte Ltd

34

Solution

Material-removal Rate and Cutting Force in Turning

The power dissipated is $Power = \frac{(4)(1924)}{60} = 128 \text{ W}$

Since W=60 N•m/min, power dissipated is 7680 N m/min. Also, power is the product of torque:

$$T = \frac{7680}{(2\pi)(400)} = 3.1 \text{ Nm}$$

Since $T = F_c D_{avg}/2$, we have $F_c = \frac{(3.1)(1000)}{12.25/2} = 506 \text{ N}$