Characterization of DNA by Spectrophotometric Assay and Melting Temperature (Tm)

After DNA isolation:

Characterization of extracted DNA by spectrophotometric assay:

- 1. DNA concentration.
- 2. DNA purity.

By measuring the absorption of <u>ultraviolet light (UV).</u>

• DNA has maximum absorption at **260nm**. WHY?

1st. UV for quantification of nucleic acid concentration :

- Is determined by measuring absorbance at **260 nm. WHY**?
- At 260 nm double-stranded DNA has specific absorption coefficient of 0.02 ($\mu g/ml$)⁻¹cm⁻¹.
- So: \rightarrow Concentration of DNA= (A₂₆₀ / ϵ L) x Dilution Factor (DF).

Beer-Lambert Law: $A = \epsilon c l$

2nd. DNA purity:

1. To detect nucleic acid purity from proteins contamination:

→ Calculate A_{260}/A_{280} WHY?

- Highly purified DNA samples have a A_{260}/A_{280} nm ratio of (1.8-1.9).
- \rightarrow What if the ratio is below 1.8? What that means?
- \rightarrow What if the ratio is higher than 1.9? What that means?

2. To detect nucleic acid purity from carbohydrates, peptides, ethanol or any organic compounds:

- → Calculate A_{260}/A_{230} WHY?
- Purified DNA samples have a A_{260}/A_{230} nm ratio of (2-2.2).

DNA and protein absorption spectrum:

*What is the effect of the contaminants on DNA concentration?

* What if the samples contaminated by proteins or organic compound?

3^{ed}. GC content:

- The two strands of a DNA molecule can be dissociated ("melted") into single strands by heat or altered pH, which breaks the <u>hydrogen bonds</u> between complementary bases (A=T and G=C).
- \rightarrow What that process called ?
- Hyperchromic and hypochromic effect ?
- The melting temperature (Tm) is the temperature at which 50% of the DNA is unpaired (denatured).
- Melting temperature profile ?

→Is the Tm same for all DNA molecules ? WHY?→What is the important of knowing Tm of DNA?

DNA melting curve:

FIGURE 4.4 DNA melting curve. A melting curve of DNA showing T_m (the melting temperature) and possible molecular conformations for various degrees of melting.

3^{ed}. GC content:

• GC content can be calculated by generating Tm profile (DNA melting curve).

$$\%$$
(G+C) = 2.44 (Tm - 69.3)

Relationship between Tm and GC%:

What do you notice about the GC content in relation to Tm?

Practical Part

Aim:

- Determination the concentration and purity of extracted DNA using UV spectrophotometer.
- Determination of DNA melting temperature and GC content percentage.

Principle:

- DNA and proteins have a maximum absorbance at 260 and 280 respectively.
- dsDNA will be separated to ssDNA by heat (denaturation).
- O.D at 260 nm will increase during denaturation... Why?
- Temperature for midpoint of denaturation gives Tm.
- The DNA of each species has a specific melting curve.. Why?

Results:

1. Characterization of DNA by Spectrophotometric Assay:

Wavelength (nm)	Absorbance of DNA	
	Blood	Plant
230		
260		
280		

Find out the concentration of DNA using the following equation:
Concentration of DNA= (A260 / ε L) x Dilution Factor.

 \rightarrow Determine the purity of the DNA.

Results:

2. Melting Temperature of DNA: SEP

Temperature (°C)	DNA Absorbance at 260 nm	
	Blood	Plant
25		
50		
60		
70		
Boiling		

 \rightarrow Plot the value of absorbance vs. temperature and calculate the Tm for sample DNA.

→ Find out the GC content of your sample using the following formula: Percent of $G + C = (Tm - 69.3) \times 2.44$

Home Work:

- Watch the following videos :
 - <u>https://www.youtube.com/watch?v=wXiiTW3pflM</u>
 - <u>https://www.youtube.com/watch?v=U2-5ukpKg_Q</u>

→ What is agarose gel electrophoresis?