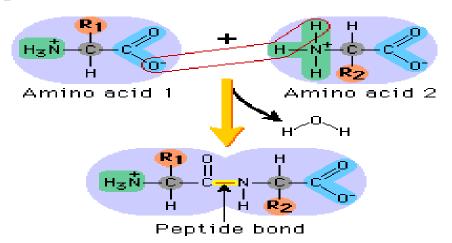
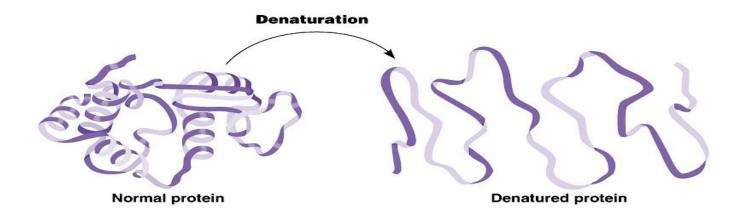

Effect of various factors on protein solubility and structure


BCH303 [Practical]

Proteins:

Proteins are polymers of <u>amino acids</u>.

- Peptide bond.
- How peptide bond formed?
- \rightarrow By removal of the elements of water (dehydration) from the α -carboxyl group of one amino acid and the α -amino group of another.


Proteins precipitation:

- What is ?
- Proteins precipitation is widely used in downstream processing of biological products in order to concentrate proteins and purify them from various contaminants.
- Factors?

• The change of one of these factors will lead to protein precipitation and/or denaturation.

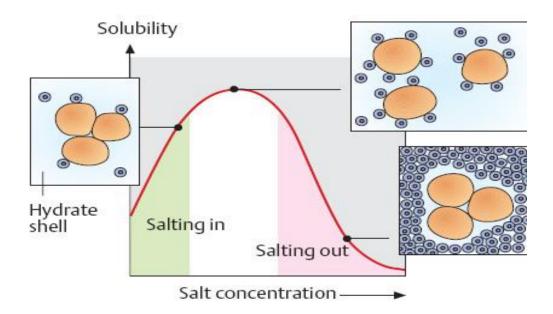
Proteins denaturation:

• **Denaturation** is a process in which the proteins **losing its quaternary structure, tertiary structure and secondary structure**, by application of some external factor or compound such as a strong acid or base, an organic solvent (e.g., alcohol or chloroform), or heat.

- No alteration on the molecule's primary structure.
- Solubility ?
- Activity?

Practical part

Tests of proteins


- 1 Effect of salt concentration on the protein solubility.
 - 2 Effect of strong acids on protein solubility and structure.
 - Effect of salts of heavy metals on protein solubility and structure.
- 4 Effect of heat on protein solubility and structure.

Experiment 1 : Effect of salt concentration on the protein solubility

Objective:

• To investigate the effect of different salt concentration on protein solubility.

Principle:

• Notes:

- 1.Each protein can be precipitated at <u>specific</u> salt concentration.
- 2.It is <u>reverse process</u>, the protein can again become soluble when we add water .

Experiment 1: Effect of salt concentration on the protein solubility

Method:

- 1.Label one tube as **A**.
- 2. Add 2ml of albumin.
- 3. Add drops of **0.1M NaCl** solution, Concentrate your vision on the tube while adding.
- 4. Record your results.
- 5. In the same tube add few amounts of 100% solid $(NH_4)_2SO_4$, shake it well.
- 6. Record your results.
- 7. Compare between the two results.

Tube	Observation
Albumin + NaCl	
Albumin+100% saturate (NH ₄) ₂ SO ₄	

Experiment 2 : Effect of strong acids on protein solubility and structure

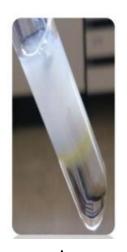
Objective:

• To investigate the effects of strong acids on the protein solubility.

Principle:

- This test depend on affecting solubility of the protein as a function of changes in pH.
- In **highly acidic media**, the protein will be <u>positively charged</u>, which is attracted to the <u>acid</u> <u>anions</u> that cause them to <u>precipitate</u>.

• Applications:


- Detection of small amount of protein in urea sample.
- Stop the enzyme reaction.

Experiment 2 : Effect of strong acids on protein solubility and structure

Method:

- 1.Label two tubes A and B.
- 2. In tube A: add 3 ml of conc. nitric acid (HNO₃) CAREFULLY.
- 3. Then, Using a dropper add drops of albumin on the inner wall of tube A to form a layer up the acid.
- 4. Record your results.
- 5. **In tube B:** Add 3 ml of the albumin solution.
- 6. Then add 5-7 drops of TCA solution CAREFULLY.
- 7. Record your results.

Tube	Observation
Albumin + HNO ₃	
Albumin+TCA	

Experiment 3: Effect of salts of heavy metals on protein solubility and structure

Objective:

• To identify the effect of heavy metal salt on protein.

Principle:

- Heavy metal salts usually contain Hg⁺², Pb⁺², Ag⁺¹ Tl⁺¹, Cd⁺² and other metals with high atomic weights.
- Heavy metal salt will **neutralize the protein**.
- The protein will precipitate as insoluble metal protein salt.

$$2 \qquad \begin{array}{c} \overset{\circ}{\overset{\circ}{\underset{\circ}{\text{loc}}}} \\ \overset{\circ}{\overset{\circ}{\text{loc}}} \\ \overset{\circ}{\overset{\circ}{\text{l$$

- Applications:
- To eliminate the poisoning by palladium Pb++,.....mercury salts Hg++

Experiment 3: Effect of salts of heavy metals on protein solubility and structure

Method:

- 1.Label two tubes A and B.
- 2. In tube A and B add 1 ml of Albumin sample.
- 3. In tube A: using a dropper add few drops of AgNO₃.
- 4. Record your results.
- 5. In tube B: using a dropper add few drops of HgCl₂.
- 6. Record your results.

Tube	Observation
Albumin $+$ AgNO ₃	
Albumin + HgCl ₂	

Experiment 4 : Effect of heat on protein solubility and structure

Objective:

• To investigate the effect of high temperature on protein structure.

Principle:

• Non-covalent bond can be broken by heating, leading to protein denaturation and the precipitation.

Experiment 4 : Effect of heat on protein solubility and structure

Method:

- 1- Take 3 ml of protein Albumin.
- 2- Place it in a boiling water bath for 5-10 minutes
- 3-Remove aside to cool to room temperature.
- 4-Note the change.

Tube	Observation
Albumin + heating	

Homework:

• From today lab, which factors lead to protein denaturation and which lead to precipitation? Differentiate between them regarding the protein activity.