BCH312 [Practical]

Preparation of Different Buffer Solutions

- All biochemical reactions occur under <u>strict conditions</u> of the concentration of hydrogen ion.
- Biological life cannot withstand large changes in hydrogen ion concentrations which we measure as the pH.
- Those solutions that have the <u>ability to resist changes</u> in pH upon the addition of **limited amounts** of acid or base are called **BURFERS**.

Two types of Buffers

Mechanism of Action:

How buffers can resist the change in pH?

-Example using [HA/A⁻] buffer:
→ Where: HA is Weak acid and A- is conjugated base [its salt].

```
HA \rightleftharpoons H^+ + A^-
```

If \mathbf{H}^+ (acid) is added to this buffer system $\rightarrow \mathbf{H}^+$ will react with <u>conjugated base</u> \rightarrow to give conjugate acid.

If **OH**⁻ (base) is added to this buffer system \rightarrow **OH**⁻ will react with conjugated acid \rightarrow to give <u>conjugate base</u> and H₂O.

Mechanism of Action

Mechanism of Action cont':

Example:

- **Buffer system:** CH_3COOH / CH_3COO^-
- □ When acid [H⁺] added:

 $CH_3COO^- + H^+ \longrightarrow CH_3COOH$

■ When base [OH⁻] added:

 $CH_3COOH + OH^- \longrightarrow CH_3COO^- + H_2O$

• NOTE: It resists pH changes when it's two components are present in specific proportions.

→ Thus the buffer is effective as long <u>as it does not run out</u> of one of its components. (There are enough conjugated base and conjugated acid to absorb the H^+ ions or OH^- ions added to the system respectively).

conjugated baseconjugated acidCH3COO-CH3COOH

Henderson-Hasselbalch equation:

It is often used to perform:

- 1. To calculate the pH of the Buffer.
- 2. To preparation of Buffer.

$$pH = pK_a + \log \frac{\left[A^{-}\right]}{\left[HA\right]}$$

- It relates the Ka [dissociation constant] of a weak acid, [HA] concentration of weak acid component, [A-] concentration of conjugate base [salt of the weak acid] component and the pH of the buffer.
- □ The equation is derived from the acid dissociation constant.

Henderson-Hasselbalch equation cont':

■ A buffer is **best used close to its pKa** [to act as a good buffer the pH of the solution must be within one pH unit of the pKa].

→ The buffer capacity is optimal when the ratio of the weak acid to its salt is 1:1; that is, when pH = pKa

Calculating the pH:

[Pkw : number of dissociation constant of H₂O].

Preistieel Pert

□ To understand the behaviour and nature of buffers solutions.

□ To learn how to prepare buffers.

A) Nature of buffers:

Method:

- 1. You are provided with: 0.2M solution of CH_3COOH , 0.2M solution of CH_3COONa .
- → Determine which is the weak acid and which is the conjugated base [or its salt].

2. Calculate the volume that you must take from CH_3COOH and CH_3COONa to prepare the following mixtures with final **volume of the solution =20 ml** :

- 1. 100% [HA]
- 2. 75% [HA], 25% [A⁻]
- 3. 50% [HA], 50% [A⁻]
- 4. 25% [HA], 75% [A⁻]

3. Calculate the pH for each solution [pKa of $CH_3COOH = 4.76$].

4. Follow the table.

Calculations:

1. To Calculate the volume that you must take from CH3COOH and CH3COONa to prepare the previous mixtures with final volume of the solution =20 ml:

(A) <u>100% [HA]:</u>

The final volume is 20ml, So: 20 x 100% = (20 x 100)/100 = 20 mlTake 20ml of HA and measure the pH.

(**B**) <u>75% [HA], 25% [A⁻]:</u>

From HA= $20 \times 75\% = (75 \times 20) / 100 = 15$ ml

From $A^{-} = 20 \ge 25\% = (25 \ge 20)/100 = 5 = 5$ ml

→ Mix 15ml HA and 5 ml A⁻ and measure the pH (measured PH) note that the total volume is 20 ml [15ml + 5ml = 20ml]

□ The same way for other mixtures ...

Note: HA : as CH_3COOH . A⁻ : as CH_3COONa .

Calculations cont':

2. To Calculate the pH for the previous mixtures with pKa of CH₃COOH = 4.76 :

(A) <u>100% [HA]:</u>

$$pH = (pKa + p[HA]) \longrightarrow p[HA] = -log \ 0.2 = 0.69 \implies pH = (4.76 + 0.69) = 2.72$$

(**B**) <u>75% [HA]</u>, <u>25% [A⁻]</u>:

pH = pka + log [A⁻] / [HA] → pH= 4.76 + log [A⁻]/[HA] → [HA] = $C_1 \times V_1 = C_2 \times V_2$ =0.2 × 15 = $C_2 \times 20 = C2 = 0.15M$

→
$$[A^-] = C_1 X V_1 = C_2 X V_2$$

= 0.2 X 5 = C₂ X 20 = C2 = 0.05 M

So, pH = $4.76 + \log 0.05 / 0.15 \rightarrow \text{pH} = \frac{4.282}{2}$

Calculations cont':

(C) <u>50%[HA], 50%[A]:</u>

pH = Pka + log [A⁻] / [HA] → pH= 4.76 + log [A⁻]/[HA] → [HA] = $C_1 \times V_1 = C_2 \times V_2$ =0.2 × 10 = C2 × 20 = C2 = 0.1M

→ [A-] =
$$C_1 \times V_1 = C_2 \times V_2$$

= 0.2 × 10 = $C_2 \times 20 = C2 = 0.1$ M

So, pH = $4.76 + \log 0.1/0.1 \rightarrow pH = 4.76 + 0 = 4.76$ [pH=pka]

(D) <u>25% [HA], 75% [A-] :</u>

pH = pka + log [A-] / [HA] → pH= 4.76 + log [A-]/[HA] → [HA] = $C_1 X V_1 = C_2 X V_2$ =0.2 X 5 = $C_2 X 20 = C2 = 0.05M$

→
$$[A^-] = C_1 X V_1 = C_2 X V_2$$

= 0.2 X 15 = C₂ X 20 = C2 = 0.15 M

So, pH = $4.76 + \log 0.15 / 0.05 \rightarrow pH = 5.24$

Solutions	HA	$\mathbf{A}^{\text{-}}$	Final volume	Calculated	Measured	2M HCl	Measured	The difference
	CH ₃ COOH (ml)	CH ₃ COONa (ml)	(ml)	рН	рН	(ml)	рН	
100%[HA]	20 ml	0	20 ml	2.729		0.1		
75%[HA],25%[A ⁻]	15 ml	5 ml	20 ml	4.28		0.1		
50%[HA],50%[A ⁻]	10 ml	10 ml	20 ml	4.76		0.1		
25%[HA],75%[A ⁻]	5 ml	15 ml	20 ml	5.24		0.1		

B) Preparation of buffer:

You are provided with 0.2M acetic acid and solid sodium acetate.
 Prepare 50ml of a 0.19M acetate buffer pH =4.86 if you know that (pKa=4.7).

Calculations:

Calculations cont' (first method):

To prepare a buffer Henderson-Hasselbalch equation is used:

pH = pka +log [A-] / [HA]

First calculate the concentration of the weak acid and its conjugated base that make up the buffer with 0.19M: Assume $[A^-] = y$ and [HA] = 0.19 - y➔ So: $4.86 = 4.76 + \log \frac{y}{0.19 - y}$ $0.1 = \log \frac{y}{0.19-y}$ \rightarrow by taking the "Anti log for both sides" \rightarrow $1.26 = \frac{y}{0.19-y}$ y = 1.26 x (0.19-y) \rightarrow y = 0.24 - 1.26 y \rightarrow y + 1.26 y = 0.24 \rightarrow 2.26 y = 0.24y=0.11 M [which is the concentration of [A⁻] in the buffer] So, 0.11 + 0.08 = 0.19M[HA] = 0.19 - 0.11= 0.08 M [which is the concentration of [HA] in the buffer]

Calculations cont' (second method):

To prepare a buffer Henderson-Hasselbalch equation is used:

pH = pka +log [A-] / [HA]

First calculate the concentration of the weak acid and its conjugated base that make up the buffer with 0.19M:

First:
$$4.86 = 4.76 + \log \frac{[A-]}{[HA]}$$

 $0.1 = \log \frac{[A-]}{[HA]} \Rightarrow by taking the "Anti log for both sides" \Rightarrow \frac{[A-]}{[HA]} = 1.26 = \frac{1.26}{1}$
SO: $\frac{1.26}{2.26}$ of total = [A-] and $\frac{1}{2.26}$ of total = [HA]
[A-] = $\frac{1.26}{2.26} \ge 0.11$ M [which is the concentration of [A-] in the buffer]
[HA-] = $\frac{1}{2.26} \ge 0.19 = 0.08$ M [which is the concentration of [HA] in the buffer]
 $0.11 + 0.08 = 0.19$ M

Calculations cont':

• To calculate the volume needed from [HA] to prepare the buffer, No. of mole of [HA] should be calculated first:

No. of mole = Molarity x Volume of solution in L = $0.08 \times 0.05 = 0.004$ mole So, M of stock = no. of mole / Volume in Liter 0.2 = 0.004 / V

→ V = 0.02 L = 20 ml

To calculate the weight needed from [A-] to prepare the buffer, No. of mole of [A-] should be calculated first:

No. of mole = Molarity x volume of solution in L

= 0.11 X 0.05 = 0.0055 mole

weight in (g) of [A-] = No. of moles x MW

→ =0.0055 x 82 = 0.451 g

Problem 1-27, p39 Problem 1-28, p40

■ Now take 20 ml from 0.2M acetic acid and 0.451 g from solid sodium acetate and then complete the volume up to 50 ml by addition of water.

C) Testing for buffering behaviour:

- □ In one beaker add 10ml of 0.19M acetate buffer that you have prepared, and in another beaker add 10ml of 0.2M KCl.
- □ Measure the pH.
- □ Add 0.1ml from 2M HCl to for both solutions.
- □ Measure the pH after the addition.

Solution	Measured pH	Add 2M HCl	Measured pH
0.19M acetate buffer		0.1 ml	
o.2M KCl		0.1 ml	