Preparation of Different Buffer Solutions

\square All biochemical reactions occur under strict conditions of the concentration of hydrogen ion.
\square Biological life cannot withstand large changes in hydrogen ion concentrations which we measure as the pH .
\square Those solutions that have the ability to resist changes in pH upon the addition of limited amounts of acid or base are called $\mathbb{B U} \mathbb{F} \| F \mathbb{R} S$ 。

Two types of Buffers

A buffer is made up of a weak acid and its conjugate base.
Or
A weak base and its conjugate acid.

Acidic Buffer

Are made from weak acid and its conjugated
base[its salt].

Example:

1. $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COONa}$ (Pka)
$\rightarrow \mathrm{CH} 3 \mathrm{COOH}$ (Weak acid)
$\rightarrow \mathrm{CH} 3 \mathrm{COONa}$ (conjugated base -its salt-)
2. $\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}$ (Pka)

Basic Buffer

Are made from weak base and its conjugated acid [its salt].

Example:

1. $\mathrm{NH}_{3} / \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{Pkb})$
$\rightarrow \mathrm{NH}_{3}$ (Weak base)
$\rightarrow \mathrm{NH}_{4} \mathrm{Cl}$ (conjugated acid -its salt-)

Mechanism of Action:

- How buffers can resist the change in pH ?
-Example using [HA/A-] buffer:
\rightarrow Where: HA is Weak acid and A- is conjugated base [its salt].

$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$

If \mathbf{H}^{+}(acid) is added to this buffer system $\rightarrow \mathbf{H}^{+}$will react with conjugated base \rightarrow to give conjugate acid.

If $\mathbf{O H}^{-}$(base) is added to this buffer system $\rightarrow \mathbf{O H}^{-}$will react with conjugated acid \rightarrow to give conjugate base and $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{HA} \stackrel{\text { он }}{\rightleftharpoons} \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$

Mechanism of Action

Mechanism of Action cont':

- Example:

- Buffer system: $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COO}^{-}$
- When acid $\left[\mathrm{H}^{+}\right]$added:

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \quad \mathrm{CH}_{3} \mathrm{COOH}
$$

- When base $\left[\mathrm{OH}^{-}\right]$added:

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

NOTE: It resists pH changes when it's two components are present in specific proportions.
\rightarrow Thus the buffer is effective as long as it does not run out of one of its components. (There are enough conjugated base and conjugated acid to absorb the H^{+}ions or OH^{-}ions added to the system respectively).

Henderson-Hasselbalch equation:

\square It is often used to perform:

1. To calculate the pH of the Buffer.
2. To preparation of Buffer.

$$
p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}
$$

- It relates the Ka [dissociation constant] of a weak acid , [HA] concentration of weak acid component, [A-] concentration of conjugate base [salt of the weak acid] component and the pH of the buffer.
\square The equation is derived from the acid dissociation constant.

Henderson-Hasselbalch equation cont':

- A buffer is best used close taits piKa [to act as a good buffer the pH of the solution must be within one pH unit of the pKa].
\rightarrow The buffer capacity is optimal when the ratio of the weak acid to its salt is $1: 1$; that is, when $\mathrm{pH}=\mathrm{pKa}$

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pka}+\log \mathrm{l} \\
\mathrm{pH}=\mathrm{pka}+\mathrm{o} \\
\mathrm{pH}=\mathrm{pka}
\end{gathered}
$$

Calculating the pH :

For weak acid [not buffers]

$$
\mathrm{pH}=\frac{\mathrm{pka}+\mathrm{p}[\mathrm{HA}]}{2}
$$

* $\mathrm{P}[\mathrm{HA}]=-\log [\mathrm{HA}]$

[Pkw : number of dissociation constant of $\mathrm{H}_{2} \mathrm{O}$].

For buffers

$$
p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}
$$

Prachical Par\}

Objectives:

\square To understand the behaviour and nature of buffers solutions.
\square To learn how to prepare buffers.

A) Nature of buffers:

Method:

1. You are provided with: 0.2 M solution of $\mathrm{CH}_{3} \mathrm{COOH}, 0.2 \mathrm{M}$ solution of $\mathrm{CH}_{3} \mathrm{COONa}$.
\Rightarrow Determine which is the weak acid and which is the conjugated base [or its salt].
2. Calculate the volume that you must take from $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ to prepare the following mixtures with final volume of the solution $=\mathbf{2 0} \mathbf{~ m l}$:
3. 100% [HA]
4. 75% [HA], $25 \%\left[\mathrm{~A}^{-}\right]$
5. $50 \%[\mathrm{HA}], 50 \%\left[\mathrm{~A}^{-}\right]$
6. $25 \%[\mathrm{HA}], 75 \%\left[\mathrm{~A}^{-}\right]$
7. Calculate the pH for each solution [pKa of $\mathrm{CH}_{3} \mathrm{COOH}=4.76$].
8. Follow the table.

Calculations:

1. To Calculate the volume that you must take from CH 3 COOH and CH 3 COONa to prepare the previous mixtures with final volume of the solution $\mathbf{= 2 0} \mathbf{~ m l}$:
(A) 100% [HA]:

The final volume is 20 ml , So:
$20 \times 100 \%=(20 \times 100) / 100=20 \mathrm{ml}$
\rightarrow Take 20 ml of HA and measure the pH .
(B) $\mathbf{7 5 \%}$ [HA], 25\% [A- $]:$

From HA $=20 \times 75 \%=(75 \times 20) / 100=15 \mathrm{ml}$
From A- $=20 \times 25 \%=(25 \times 20) / 100=5 \mathrm{ml}$
\rightarrow Mix 15 ml HA and $5 \mathrm{ml} \mathrm{A}^{-}$and measure the pH (measured PH) note that the total volume is 20 ml $[15 \mathrm{ml}+5 \mathrm{ml}=20 \mathrm{ml}]$
\square The same way for other mixtures ...

Calculations cont':

2. To Calculate the $\mathbf{p H}$ for the previous mixtures with pKa of $\mathrm{CH}_{3} \mathrm{COOH}=4.76$:
(A) $\mathbf{1 0 0 \%}$ [HA]:

$$
\mathrm{pH}=\frac{(\mathrm{pKa}+\mathrm{p}[\mathrm{HA}])}{2} \rightarrow \mathrm{p}[\mathrm{HA}]=-\log 0.2=0.69 \rightarrow \mathrm{pH}=\frac{(4.76+0.69)}{2}=\underline{\mathbf{2 . 7 2}}
$$

(B) $\mathbf{7 5 \%}$ [HA], 25\% [A-]:

$$
\begin{aligned}
\mathrm{pH}=\mathrm{pka}+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}] \rightarrow \mathrm{pH}=4.76+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}] \rightarrow[\mathrm{HA}] & =\mathrm{C}_{1} \times \mathrm{VV}_{1}=\mathrm{C}_{2} \times \mathrm{V}_{2} \\
& =0.2 \times 15=\mathrm{C}_{2} \times 20=\mathrm{C} 2=0.15 \mathrm{M} \\
\rightarrow\left[\mathrm{~A}^{-}\right] & =\mathrm{C}_{1} \times \mathrm{V}_{1}=\mathrm{C}_{2} \times \mathrm{V}_{2} \\
& =0.2 \times 5=\mathrm{C}_{2} \times 20=\mathrm{C} 2=0.05 \mathrm{M}
\end{aligned}
$$

So, $\mathrm{pH}=4.76+\log 0.05 / 0.15 \rightarrow \mathrm{pH}=\underline{4.282}$

Calculations cont':

(C) $\mathbf{5 0 \%}[\mathrm{HA}], \mathbf{5 0 \%}[\mathrm{A}]$:

$$
\begin{aligned}
\mathrm{pH}=\mathrm{Pka}+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}] \rightarrow \mathrm{pH}=4.76+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}] \quad \rightarrow[\mathrm{HA}] & =\mathrm{C}_{1} \times \mathrm{XV}_{1}=\mathrm{C}_{2} \mathrm{X} \mathrm{~V}_{2} \\
& =0.2 \times 10=\mathrm{C} 2 \times 20=\mathrm{C} 2=0.1 \mathrm{M} \\
\rightarrow[\mathrm{~A}-] & =\mathrm{C}_{1} \mathrm{XV}_{1}=\mathrm{C}_{2} \times \mathrm{V}_{2} \\
& =0.2 \times 10=\mathrm{C}_{2} \times 20=\mathrm{C} 2=0.1 \mathrm{M}
\end{aligned}
$$

So, $\mathrm{pH}=4.76+\log 0.1 / 0.1 \rightarrow \mathrm{pH}=4.76+0=\underline{4.76}[\mathbf{p H}=\mathbf{p k a}]$
(D) $\underline{\mathbf{2 5} \%}$ [НА], $\mathbf{7 5 \%}$ [A-]:

$$
\begin{aligned}
\mathrm{pH}=\mathrm{pka}+\log [\mathrm{A}-] /[\mathrm{HA}] \rightarrow \mathrm{pH}=4.76+\log [\mathrm{A}-] /[\mathrm{HA}] \rightarrow[\mathrm{HA}] & =\mathrm{C}_{1} \mathrm{XV}_{1}=\mathrm{C}_{2} \mathrm{XV}_{2} \\
& =0.2 \times 5=\mathrm{C}_{2} \times 20=\mathrm{C} 2=0.05 \mathrm{M} \\
& \rightarrow\left[\mathbf{A}^{-}\right]=\mathrm{C}_{1} \mathrm{XV}_{1}=\mathrm{C}_{2} \mathrm{XV}_{2} \\
& =0.2 \times 15=\mathrm{C}_{2} \times 20=\mathrm{C} 2=0.15 \mathrm{M}
\end{aligned}
$$

So, $\mathrm{pH}=4.76+\log 0.15 / 0.05 \rightarrow \mathrm{pH}=\underline{5.24}$

Method:

Solutions	$\begin{gathered} \mathrm{HA} \\ \mathrm{CH}_{3} \mathrm{COOH} \\ (\mathrm{ml}) \end{gathered}$	$\begin{gathered} \mathrm{A}^{-} \\ \mathrm{CH}_{3} \mathrm{COONa} \\ (\mathrm{ml}) \end{gathered}$	Final volume (ml)	Calculated pH	Measured pH	$\begin{aligned} & \text { 2M HCl } \\ & (\mathrm{ml}) \end{aligned}$	Measured pH	The difference
100\%[HA]	20 ml	0	20 ml	2.729		0.1		
75\%[HA],25\% [A-]	15 ml	5 ml	20 ml	4.28		0.1		
50\% [HA],50\% ${ }^{\text {[}}{ }^{-}$]	10 ml	10 ml	20 ml	4.76		0.1		
25\%[HA],75\%[${ }^{-}$]	5 ml	15 ml	20 ml	5.24		0.1		

B) Preparation of buffer:

\square You are provided with $\mathbf{0 . 2 \mathrm { M }}$ acetic acid and solid sodium acetate.
Prepare 50 ml of a 0.19 M acetate buffer $\mathrm{pH}=4.86$ if you know that ($\mathrm{pKa}=4.7$).

Calculations:

- Solid sodium acetate [as A-].
- 0.2M Acetic acid [as HA].
- $\mathrm{Pka}=4.76$

- Final volume of buffer $=50 \mathrm{ml}$
- $\mathrm{pH}=4.86$
- Buffer concentration $=0.19 \mathrm{M}$
- Buffer Concentration $=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]$
$0.19=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]$

Calculations cont' (first method):

\square To prepare a buffer Henderson-Hasselbalch equation is used:

$$
\mathbf{p H}=\mathbf{p k a}+\log [\mathbf{A}-] /[\mathbf{H A}]
$$

$\square \quad$ First calculate the concentration of the weak acid and its conjugated base that make up the buffer with 0.19 M :
\rightarrow Assume $\left[\mathrm{A}^{-}\right]=\mathrm{y} \quad$ and $\quad[\mathrm{HA}]=0.19-\mathrm{y}$
So:
$4.86=4.76+\log \frac{\mathrm{y}}{0.19-\mathrm{y}}$
$0.1=\log \frac{\mathrm{y}}{0.19-\mathrm{y}} \quad \boldsymbol{\rightarrow}$ by taking the "Anti \log for both sides" $\boldsymbol{\rightarrow} \quad 1.26=\frac{\mathrm{y}}{0.19-\mathrm{y}}$
$\mathrm{y}=1.26 \mathrm{x}(0.19-\mathrm{y}) \quad \rightarrow \quad \mathrm{y}=0.24-1.26 \mathrm{y} \quad \rightarrow \quad \mathrm{y}+1.26 \mathrm{y}=0.24 \quad \rightarrow \quad 2.26 \mathrm{y}=0.24$
$\mathrm{y}=0.11 \mathrm{M}$ [which is the concentration of [A-] in the buffer]

So,

$$
0.11+0.08=0.19 \mathrm{M}
$$

$[\mathrm{HA}]=0.19-0.11$
$=\underline{0.08 \mathrm{M}}$ [which is the concentration of $[\mathrm{HA}]$ in the buffer]

Calculations cont' (second method):

\square To prepare a buffer Henderson-Hasselbalch equation is used:

$$
\mathbf{p H}=\mathbf{p k a}+\log [\mathbf{A}-] /[\mathbf{H A}]
$$

\square First calculate the concentration of the weak acid and its conjugated base that make up the buffer with 0.19 M :
First: $4.86=4.76+\log \frac{[\mathrm{A}-]}{[\mathrm{HA}]}$

$$
\begin{aligned}
& 0.1=\log \frac{[\mathrm{A}-]}{[\mathrm{HA}]} \quad \rightarrow \text { by taking the "Anti } \log \text { for both sides" } \rightarrow \frac{[\mathrm{A}-]}{[\mathrm{HA}]}=1.26=\frac{1.26}{1} \\
& \mathrm{SO}: \frac{1.26}{2.26} \text { of total }=[\mathrm{A}-] \quad \text { and } \quad \frac{1}{2.26} \text { of total }=[\mathrm{HA}]
\end{aligned}
$$

[A-] $=\frac{1.26}{2.26} \times 0.19=0.11 \mathbf{M}$ [which is the concentration of $\left[A^{-}\right]$in the buffer]
$[H A-]=\frac{1}{2.26} \times 0.19=\underline{0.08} \mathbf{M}$ [which is the concentration of [HA] in the buffer]

\qquad

Calculations cont':

- To calculate the volume needed from [HA] to prepare the buffer, No. of mole of [HA] should be calculated first:

No. of mole $\begin{aligned} & =\text { Molarity } \mathbf{x} \text { Volume of solution in } L \\ & =0.08 \mathrm{X} 0.05=0.004 \mathrm{~mole}\end{aligned}$

$$
=0.08 \times 0.05=0.004 \mathrm{~mole}
$$

So, \mathbf{M} of stock $=$ no. of mole $/$ Volume in Liter

$$
0.2=0.004 / \mathrm{V}
$$

$\rightarrow \mathrm{V}=0.02 \mathrm{~L}=\underline{20 \mathrm{ml}}$
\square To calculate the weight needed from [A-] to prepare the buffer, No. of mole of [A-] should be calculated first:

No. of mole $=$ Molarity x volume of solution in L

$$
=0.11 \times 0.05=0.0055 \mathrm{~mole}
$$

weight in (g) of [A-] = No. of moles x MW

$$
\begin{aligned}
& \text { Problem 1-27, p39 } \\
& \text { Problem 1-28, p40 }
\end{aligned}
$$

$\rightarrow \quad=0.0055 \times 82=\underline{0.451 \mathrm{~g}}$

Method:

\square Now take 20 ml from 0.2 M acetic acid and 0.451 g from solid sodium acetate and then complete the volume up to 50 ml by addition of water.

C) Testing for buffering behaviour:

\square In one beaker add 10 ml of 0.19 M acetate buffer that you have prepared, and in another beaker add 10 ml of 0.2 M KCl .
\square Measure the pH .
\square Add 0.1 ml from 2 M HCl to for both solutions.
\square Measure the pH after the addition.

Solution	Measured $\mathbf{p H}$	Add 2M HCl	Measured pH
0.19 M acetate buffer		0.1 ml	
0.2 M KCl		0.1 ml	

