
BCH312 [Practical]

### **Preparation of Different Buffer Solutions**



- All biochemical reactions occur under <u>strict conditions</u> of the concentration of hydrogen ion.
- Biological life cannot withstand large changes in hydrogen ion concentrations which we measure as the pH.
- Those solutions that have the <u>ability to resist changes</u> in pH upon the addition of **limited amounts** of acid or base are called **BUFFERS**.

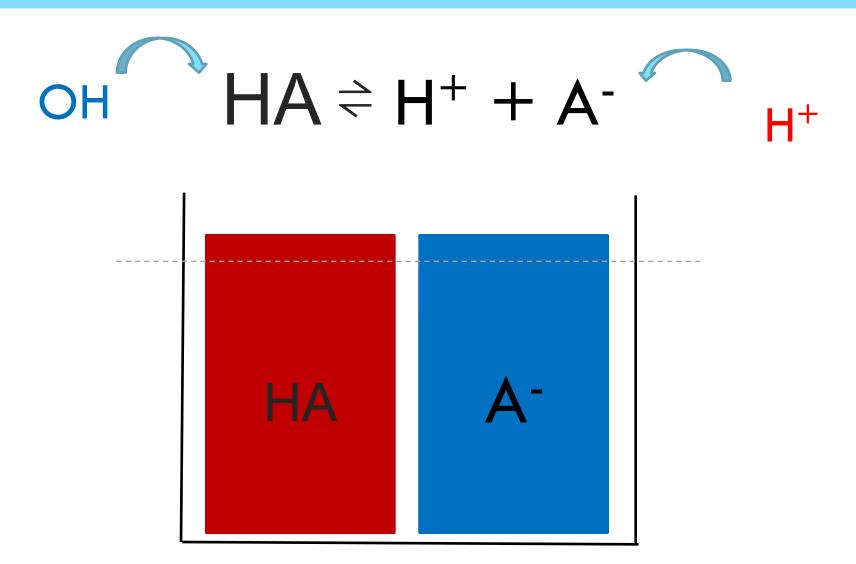
# **Two types of Buffers**



## **Mechanism of Action:**

**How buffers can resist the change in pH?** 

-Example using [HA/A<sup>-</sup>] buffer:
→ Where: HA is Weak acid and A- is conjugated base [its salt].


```
HA \rightleftharpoons H^+ + A^-
```

If  $H^+$  (acid) is added to this buffer system  $\rightarrow H^+$  will react with <u>conjugated base</u>  $\rightarrow$  to give conjugate acid.

<sup>H⁺</sup> A⁻ ≑ HA If **OH**<sup>-</sup> (base) is added to this buffer system  $\rightarrow$  **OH**<sup>-</sup> will react with conjugated acid  $\rightarrow$  to give <u>conjugate base</u> and H<sub>2</sub>O.



## **Mechanism of Action**



## **Mechanism of Action cont':**

### **Example:**

- **Buffer system:** CH<sub>3</sub>COOH / CH<sub>3</sub>COO<sup>-</sup>
- When acid  $[H^+]$  added:

 $CH_3COO^- + H^+ \longrightarrow CH_3COOH$ 

• When base [OH-] added:

 $CH_3COOH + OH^- \longrightarrow CH_3COO^- + H_2O$ 

• **NOTE:** It resists pH changes when it's two components are present in specific proportions.

→ Thus the buffer is effective as long <u>as it does not run out</u> of one of its components. (There are enough conjugated base and conjugated acid to absorb the  $H^+$  ions or  $OH^-$  ions added to the system respectively).

conjugated baseconjugated acidCH3COO-CH3COOH

## **Henderson-Hasselbalch equation:**

### **It is often used to perform:**

- 1. To calculate the pH of the Buffer.
- 2. To preparation of Buffer.

$$pH = pK_a + \log \frac{\left[A^{-}\right]}{\left[HA\right]}$$

- It relates the Ka [dissociation constant] of a weak acid, [HA] concentration of weak acid component, [A-] concentration of conjugate base [salt of the weak acid] component and the pH of the buffer.
- □ The equation is derived from the acid dissociation constant.

## **Henderson-Hasselbalch equation cont':**

□ A buffer is **best used close to its pKa** [to act as a good buffer the pH of the solution must be within one pH unit of the pKa].

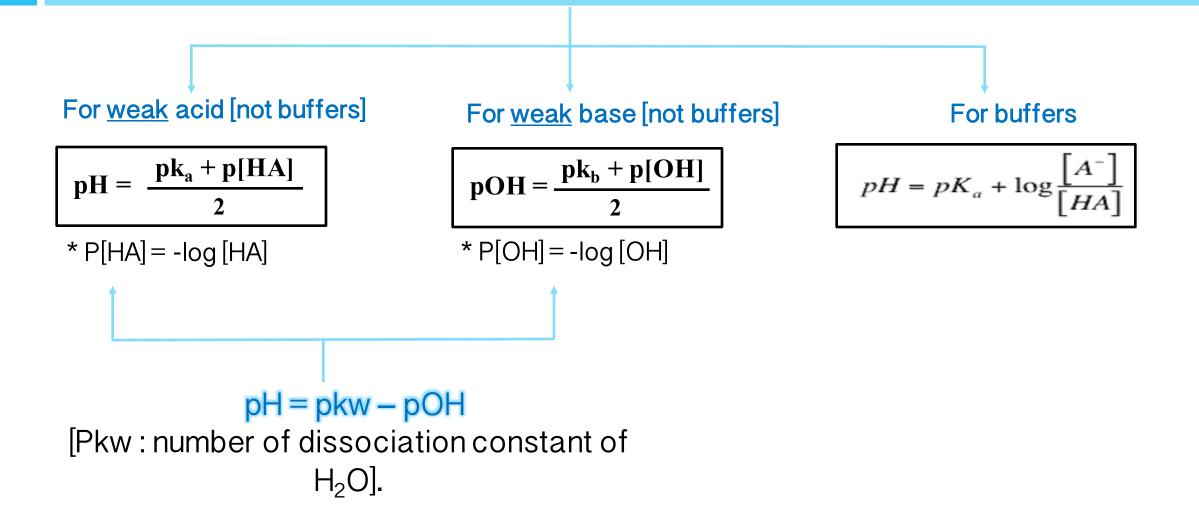
→ The buffer capacity is optimal when the ratio of the weak acid to its salt is 1:1; that is, when pH = pKa

# **Buffer capacity:**

Quantitative measure of buffer resistance to pH changes is called **buffer capacity**.

Buffer capacity can be defined in many ways, it can be defined as:

The number of moles of  $H^+/OH^-$  ions that must be added to <u>one liter</u> of the buffer in order to decrease /increase the pH by <u>one unit</u> respectively.


The buffer capacity is **expressed as**  $\beta$  and can be derived from Henderson Hasselbalch equation:

$$\boldsymbol{\beta} = \frac{2.3 \ K_{a} \ [H^{+}][C]}{(K_{a} + [H^{+}])^{2}} \longrightarrow From the equation \rightarrow the buffer capacity is directly proportional to the buffer concentration.$$

#### □ Where :

 $\beta$  = the buffer capacity, [H+] = the hydrogen ion concentration of the buffer, [C] = concentration of the buffer and Ka= acid dissociation constant

# **Calculating the pH:**



## Preichicel Perf



### □ To understand the behaviour and nature of buffers solutions.

□ To learn how to prepare buffers.

# **A) Nature of buffers:**

### Method:

- 1. You are provided with: 0.2M solution of  $CH_3COOH$ , 0.2M solution of  $CH_3COONa$ .
- → Determine which is the weak acid and which is the conjugated base [or its salt].

2. Calculate the volume that you must take from  $CH_3COOH$  and  $CH_3COONa$  to prepare the following mixtures with final volume of the solution =20 ml :

- 1. 100% [HA]
- 2. 75% [HA] , 25% [A<sup>-</sup>]
- 3. 50% [HA] , 50% [A<sup>-</sup>]
- **4**. 25% [HA] , 75% [A<sup>-</sup>]

Calculate the pH for each solution [pKa of CH<sub>3</sub>COOH = 4.76].
 Follow the table.

## **Calculations:**

1. To Calculate the volume that you must take from CH3COOH and CH3COONa to prepare the previous mixtures with final volume of the solution =20 ml:

#### (A) <u>100% [HA]:</u>

The final volume is 20ml, So:  $20 \ge 100\% = (20 \ge 100)/100 = 20 \text{ ml}$ Take 20ml of HA and measure the pH.

#### **(B)** <u>75% [HA], 25% [A<sup>-</sup>]:</u>

From HA=  $20 \times 75\% = (75 \times 20)/100 = 15 \text{ ml}$ 

From  $A^{-} = 20 \ge 25\% = (25 \ge 20)/100 = 5 = 5$  ml

→ Mix 15ml HA and 5 ml A<sup>-</sup> and measure the pH (measured PH) note that the total volume is 20 ml [15ml+5ml=20ml]

□ The same way for other mixtures ...

Note: HA : as CH<sub>3</sub>COOH. A<sup>-</sup> : as CH<sub>3</sub>COONa.

## **Calculations cont':**

2. To Calculate the pH for the previous mixtures with pKa of  $CH_3COOH = 4.76$ :

(A) <u>100% [HA]:</u>

$$pH = (pKa + p[HA]) \longrightarrow p[HA] = -log \ 0.2 = 0.69 \implies pH = (4.76 + 0.69) = 2.72$$

(B) <u>75% [HA]</u>, <u>25% [A<sup>-</sup>]</u>:

pH = pka + log [A<sup>-</sup>] / [HA] → pH=4.76 + log [A<sup>-</sup>]/[HA] → [HA] =  $C_1 X V_1 = C_2 X V_2$ =0.2 X 15 =  $C_2 X 20 = C2 = 0.15M$ 

→ 
$$[A^-] = C_1 X V_1 = C_2 X V_2$$
  
= 0.2 X 5 = C<sub>2</sub> X 20 = C2 = 0.05 M

So,  $pH = 4.76 + \log 0.05/0.15 \rightarrow pH = 4.282$ 

## **Calculations cont':**

#### (C) <u>50%[HA]</u>, <u>50%[A]</u>:

pH = Pka + log [A<sup>-</sup>] / [HA] → pH= 4.76 + log [A<sup>-</sup>]/[HA] → [HA] = C<sub>1</sub> X V<sub>1</sub> = C<sub>2</sub> X V<sub>2</sub> =0.2 X 10 = C2 X 20 = C2 = 0.1M

→ [A-] = 
$$C_1 X V_1 = C_2 X V_2$$
  
= 0.2 X 10 =  $C_2 X 20 = C2 = 0.1 M$ 

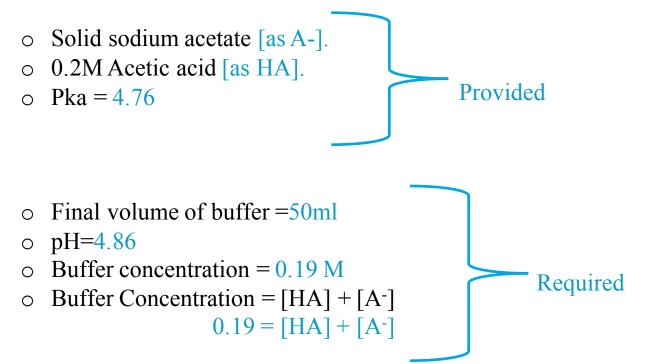
So, pH =  $4.76 + \log 0.1/0.1 \rightarrow pH = 4.76 + 0 = 4.76$  [pH=pka]

#### (D) <u>25% [HA], 75% [A-] :</u>

pH = pka + log [A-] / [HA] → pH= 4.76 + log [A-]/[HA] → [HA] =  $C_1 X V_1 = C_2 X V_2$ =0.2 X 5 =  $C_2 X 20 = C2 = 0.05M$ 

→ 
$$[A^-] = C_1 X V_1 = C_2 X V_2$$
  
= 0.2 X 15 = C<sub>2</sub> X 20 = C2 = 0.15 M

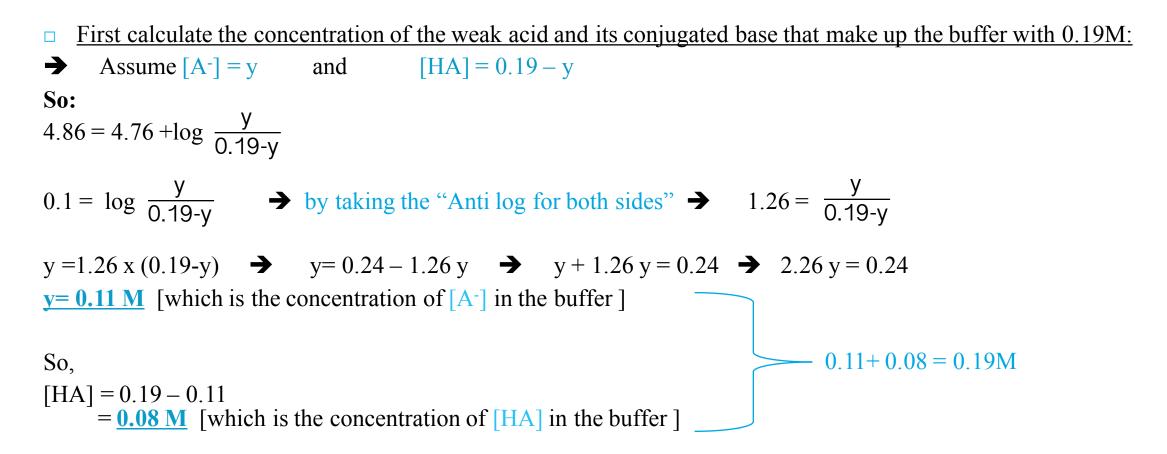
So, pH =  $4.76 + \log 0.15/0.05 \rightarrow pH = 5.24$ 


## **Result:**

| Solutions                    | HA<br>CH <sub>3</sub> COOH<br>(ml) | A <sup>-</sup><br>CH <sub>3</sub> COONa<br>(ml) | Final volume<br>(ml) | Calculated<br>pH | Measured<br>pH | 2M HCl<br>(ml) | Measured<br>pH | The difference |
|------------------------------|------------------------------------|-------------------------------------------------|----------------------|------------------|----------------|----------------|----------------|----------------|
| 100%[HA]                     |                                    |                                                 | 20 ml                |                  |                | 0.1            |                |                |
| 75%[HA],25%[A <sup>-</sup> ] |                                    |                                                 | 20 ml                |                  |                | 0.1            |                |                |
| 50%[HA],50%[A <sup>-</sup> ] |                                    |                                                 | 20 ml                |                  |                | 0.1            |                |                |
| 25%[HA],75%[A <sup>-</sup> ] |                                    |                                                 | 20 ml                |                  |                | 0.1            |                |                |

# **B) Preparation of buffer:**

You are provided with 0.2M acetic acid and solid sodium acetate.
 Prepare 50ml of a 0.19M acetate buffer pH =4.86 if you know that (pKa=4.76).


### **Calculations:**



## **Calculations cont':**

**To prepare a buffer Henderson-Hasselbalch equation is used:** 

**pH** = **pka** + **log [A-]** / **[HA]** 



## **Calculations cont':**

• To calculate the volume needed from [HA] to prepare the buffer, No. of mole of [HA] should be calculated first:

No. of mole = Molarity x Volume of solution in L =  $0.08 \times 0.05 = 0.004$ mole So, M of stock = no. of mole / Volume in Liter 0.2 = 0.004 / V

→ V = 0.02 L = 20 ml

□ <u>To calculate the weight needed from [A-] to prepare the buffer, No. of mole of [A-] should be calculated first:</u>

**No. of mole = Molarity x volume of solution in L** 

= 0.11 X 0.05 = 0.0055 mole

weight in (g) of [A-] = No. of moles x MW

→ = $0.0055 \times 82 = 0.451 \text{ g}$ 



■ Now take 20 ml from 0.2M acetic acid and 0.451 g from solid sodium acetate and then complete the volume up to 50 ml by addition of water.

# **C)** Testing for buffering behaviour:

- □ In one beaker add 10ml of 0.19M acetate buffer that you have prepared, and in another beaker add 10ml of 0.2M KCl.
- □ Measure the pH.
- □ Add 0.1ml from 2M HCl to for both solutions.
- □ Measure the pH after the addition.

| Solution             | Measured pH | Add 2M HCl | Measured pH |
|----------------------|-------------|------------|-------------|
| 0.19M acetate buffer |             | 0.1 ml     |             |
| o.2M KCl             |             | 0.1 ml     |             |



You are provided with 0.5M acetic acid and solid sodium acetate.
 Prepare 100ml of a 0.3M acetate buffer pH =4.78 if you know that (pKa=4.76).

→ "individually"