Chapter 4
Reactions in Aqueous Solutions
A solution is a homogenous mixture of 2 or more substances.

The solute is(are) the substance(s) present in the smaller amount(s).

The solvent is the substance present in the larger amount.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Solvent</th>
<th>Solute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft drink</td>
<td>H₂O</td>
<td>Sugar, CO₂</td>
</tr>
<tr>
<td>Air</td>
<td>N₂</td>
<td>O₂, Ar, CH₄</td>
</tr>
</tbody>
</table>

Aqueous solutions of KMnO₄

Precipitation Reactions

- Molecular equation:
 \[
 \text{Pb(NO}_3\text{)}_2 (aq) + 2\text{NaI (aq)} \rightarrow \text{PbI}_2 (s) + 2\text{NaNO}_3 (aq)
 \]

- Ionic equation:

 \[
 \text{Pb}^{2+} + 2\text{I}^- \rightarrow \text{PbI}_2 (s)
 \]

- Net ionic equation:

 \[
 \text{Pb}^{2+} + 2\text{I}^- \rightarrow \text{PbI}_2 (s)
 \]

Neutralization Reaction

- acid + base → salt + water

- \[
 \text{HCl (aq)} + \text{NaOH (aq)} \rightarrow \text{NaCl (aq)} + \text{H}_2\text{O}
 \]
Oxidation-Reduction Reactions
(electron transfer reactions)

\[2Mg \rightarrow 2Mg^{2+} + 4e^- \quad \text{Oxidation half-reaction (lose } e^-) \]
\[O_2 + 4e^- \rightarrow 2O^{2-} \quad \text{Reduction half-reaction (gain } e^-) \]

\[2Mg + O_2 + 4e^- \rightarrow 2Mg^{2+} + 2O^{2-} + 4e^- \]
\[2Mg + O_2 \rightarrow 2MgO \]

The Oxidation Numbers of Elements in their Compounds
1. Combination Reactions

A *combination reaction* is a reaction in which two or more substances combine to form a single product.

\[\text{A + B} \rightarrow \text{C} \]

\[2\text{Al} + 3\text{Br}_2 \rightarrow 2\text{AlBr}_3 \]

2. Decomposition Reactions

- Decomposition reactions are the opposite of combination reactions.
- A *decomposition reaction* is the breakdown of a compound into two or more components.

\[\text{C} \rightarrow \text{A + B} \]

\[2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2 \]
Types of Oxidation-Reduction Reactions

3. Combustion Reactions

A combustion reaction is a reaction in which a substance reacts with oxygen, usually with the release of heat and light to produce a flame.

\[A + O_2 \rightarrow B \]

\[S + O_2 \rightarrow SO_2 \]

\[2Mg + O_2 \rightarrow 2MgO \]

Concentration of solution

The concentration of a solution is the amount of solute present in a given quantity of solvent or solution.

Molarity (M), or molar concentration, which is the number of moles of solute per liter of solution.

\[M = \text{molarity} = \frac{\text{moles of solute}}{\text{liters of solution}} \]

\[M = \frac{n}{V} \]

where \(n \) denotes the number of moles of solute. \(V \) is the volume of the solution in liters.
What mass of KI is required to make 500. mL of a 2.80 \(M \) KI solution?

\[
\text{volume of KI solution} \quad \frac{M \text{ KI}}{\text{mole KI}} \quad \frac{M \text{ KI}}{\text{grams KI}}
\]

\[
500 \, \text{mL} \times \frac{1 \text{ L}}{1000 \, \text{mL}} \times \frac{2.80 \text{ mol KI}}{1 \, \text{L soln}} \times \frac{166 \text{ g KI}}{1 \, \text{mol KI}} = 232 \, \text{g KI}
\]
Concentration of solution

EXAMPLE 4.6

How many grams of potassium dichromate (K₂Cr₂O₇) are required to prepare a 250-mL solution whose concentration is 2.16 M?

Strategy How many moles of K₂Cr₂O₇ does a 1-L (or 1000 mL) 2.16 M K₂Cr₂O₇ solution contain? A 250-mL solution? How would you convert moles to grams?

Solution The first step is to determine the number of moles of K₂Cr₂O₇ in 250 mL or 0.250 L of a 2.16 M solution. Rearranging Equation (4.1) gives

\[
\text{moles of solute} = \text{molarity} \times \text{L soln}
\]

Thus,

\[
\text{moles of K}_2\text{Cr}_2\text{O}_7 = \frac{2.16 \text{ mol K}_2\text{Cr}_2\text{O}_7}{1 \text{ L soln}} \times 0.250 \text{ L soln} = 0.540 \text{ mol K}_2\text{Cr}_2\text{O}_7
\]

The molar mass of K₂Cr₂O₇ is 294.2 g, so we write

\[
\text{grams of K}_2\text{Cr}_2\text{O}_7 \text{ needed} = 0.540 \text{ mol K}_2\text{Cr}_2\text{O}_7 \times \frac{294.2 \text{ g K}_2\text{Cr}_2\text{O}_7}{1 \text{ mol K}_2\text{Cr}_2\text{O}_7} = 159 \text{ g K}_2\text{Cr}_2\text{O}_7
\]

Check As a ball-park estimate, the mass should be given by [molarity (mol/L) × volume (L) × molar mass (g/mol)] or [2 mol/L × 0.25 L × 300 g/mol] = 150 g. So the answer is reasonable.

Practice Exercise What is the molarity of an 85.0-mL ethanol (C₂H₅OH) solution containing 1.77 g of ethanol?

EXAMPLE 4.7

In a biochemical assay, a chemist needs to add 3.81 g of glucose to a reaction mixture. Calculate the volume in milliliters of a 2.53 M glucose solution she should use for the addition.

Strategy We must first determine the number of moles contained in 3.81 g of glucose and then use Equation (4.2) to calculate the volume.

Solution From the molar mass of glucose, we write

\[
3.81 \text{ g C}_6\text{H}_{12}\text{O}_6 \times \frac{1 \text{ mol C}_6\text{H}_{12}\text{O}_6}{180.2 \text{ g C}_6\text{H}_{12}\text{O}_6} = 2.114 \times 10^{-2} \text{ mol C}_6\text{H}_{12}\text{O}_6
\]

Next, we calculate the volume of the solution that contains \(2.114 \times 10^{-2}\) mol of the solute. Rearranging Equation (4.2) gives

\[
V = \frac{n}{M} = \frac{2.114 \times 10^{-2} \text{ mol C}_6\text{H}_{12}\text{O}_6}{2.53 \text{ mol C}_6\text{H}_{12}\text{O}_6/\text{L soln}} \times \frac{1000 \text{ mL soln}}{1 \text{ L soln}} = 8.36 \text{ mL soln}
\]

Check One liter of the solution contains 2.53 moles of C₆H₁₂O₆. Therefore, the number of moles in 8.36 mL or 8.36 \(\times\) 10⁻³ L is (2.53 mol \(\times\) 8.36 \(\times\) 10⁻³) or 2.12 \(\times\) 10⁻² mol. The small difference is due to the different ways of rounding off.

Practice Exercise What volume (in milliliters) of a 0.315 M NaOH solution contains 6.22 g of NaOH?