

Periodic Relationships Among the Elements

When the Elements Were Discovered

		Ancient	t times			1735–1	843		1894–1	918							
		Middle	Ages-1	700		1843–1	886		1923–1	961		1965–					
\mathbf{H}^{1}																	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116	(117)	118
				58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
				90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

	ns ¹	G	rour	nd S	State	e El	ectr	on (Con	figu	ratio	ons	of th	ne E		nent	S S	ıs ² np ⁶
г	l 1A	nS ²											ns²n	ns²n	ns²n	ns ² n	ns²n	18 8A
1	1 H 1 s ¹	2 2.A											13 3.A	14 4A	15 5A	16 6A	17 74	2 He 1 <i>s</i> ²
2	8 1 .i 25 ¹	4 Be 2.s ²	<u> </u>				2					10	5 F 2 <i>s</i> ² 2 <i>p</i> ¹	$\begin{pmatrix} 6 \\ C \\ 2s^2 2 p^2 \end{pmatrix}$	7 N 2s ² 2 p ³	$8 \\ O \\ 2s^2 2 y^4$	9 F 2 <i>s</i> ² 2 <i>p</i> ⁵	10 Ne 2 <i>s</i> ² 2 <i>p</i> ⁶
3	11 Na 3s1	12 Mg 3s ²	3 3B	4 4B	5 5B	6 6B	7 7 7 B	8	9 	10	11 1 B	12 2B	13 Al $3s^{2}5p^{1}$	14 Si $3s^23p^2$	1: P 3s ² 3 p ³	$16 \\ S \\ 3s^2 3p^4$	$ \begin{array}{c} 17 \\ C \\ 3s^{2}3p^{5} \end{array} $	18 Ar 3 <i>s</i> ² 3 <i>p</i> ⁶
4	19 I K 4s ¹	20 C a 4.s ²	21 Sc $4s^23d^1$	22 Ti $4s^23d^2$	$23 \\ \mathbf{V} \\ 4s^2 3d^3$	24 Cr 4s ¹ 3d ⁵	25 Mn 4s'3d ⁵	26 Fe 4 <i>s</i> ² 3 <i>d</i> ⁶	27 Co 4 <i>s</i> ² 3 <i>d</i> ⁷	28 Ni 4 <i>s</i> ² 3 <i>d</i> ⁸	29 Cu 4 <i>s</i> ¹ 3 <i>d</i> ¹⁰	$ \begin{array}{c} 30 \\ \mathbf{Z}_{\mathbf{I}} \\ 4s^2 3t^{10} \end{array} $	3 Ga 4 <i>s</i> ² . <i>p</i> ¹	32 G_{4} $4s^{2}4p^{2}$	$ \begin{array}{c} 33\\ \mathbf{A}_{s}\\ 4s^{22}p^{3} \end{array} $	34 Se 4 <i>s</i> ² 4,9 ⁴	$ \begin{array}{c} 3; \\ \mathbf{B}; \\ 4s^{22}p^5 \end{array} $	36 Kr 4 <i>s</i> ² 4p ⁶
5	37 F.b 5s ¹	38 Sr 5 <i>s</i> ²	39 $5s^24d^1$	$ \begin{array}{c} 40 \\ \mathbf{Zr} \\ 5s^2 4d^2 \end{array} $	41 Nb $5s^{1}4d^{4}$	42 Mo 5 <i>s</i> ¹ 4 <i>d</i> ⁵	43 Te 5s ³ 4 <i>d</i> 5	44 Ru 5 <i>s</i> ¹ 4 <i>d</i> 7	45 Rh 5s ¹ 4d ⁸	46 Pd 4 <i>d</i> ¹⁰	47 Ag $5s^{1}4d^{10}$	48 Cc 5 <i>s</i> ² 4. <i>t</i> ¹⁰	49 In $5s^{2}$; p^{1}	50 Sr $5s^25p^2$	$51 \\ SI \\ 5s^{2}5 p^{3}$	52 Te 5s ² 5p ⁴		54 Xe 5 <i>s</i> ² 5 <i>p</i> ⁶
6	55 Cs 6s ¹	56 Ba 6s ²	57 La $6s^2 5d^1$	72 Hf $6s^25d^2$	$73 \\ Ta \\ 6s^25d^3$	74 W $6s^25d^4$	75 Re 6s ¹ 5d ⁵	76 Os $6s^25d^6$	77 Ir 6s ² 5d ⁷	78 Pt 6s ¹ 5d ⁹	79 Au $6s^{1}5d^{10}$	80 H g 6 <i>s</i> ² 5 <i>t</i> ¹⁰	81 $6s^{2}6p^{1}$	82 Pt $6s^26p^2$	$ \begin{array}{c} 83\\ \mathbf{B}\\ 6s^{2}cp^{3} \end{array} $	84 Po 6s ² 6,9 ⁴	$\begin{array}{c} 85\\ \mathbf{A}\\ 6s^{2}Cp^{5}\end{array}$	86 Rn 6 <i>s</i> ² 6 <i>p</i> ⁶
7	87 Fr 701	88 Ra 4s ²	89 Ac $7s^25d^1$	104 Rf 7 <i>s</i> ² 6 <i>d</i> ²	105 Db 7 <i>s</i> ² 6 <i>d</i> ³	106 Sg 7 <i>s</i> ² 6 <i>d</i> ⁴	107 ₿h 7s 6d⁵	108 Hs 7 <i>s</i> ² 6 <i>d</i> ⁶	109 Mt 7 <i>s</i> ² 6 <i>d</i> 7	110 Ds 7 <i>s</i> ² 6 <i>d</i> ⁸	111 Rg 7 <i>s</i> ² 6 <i>d</i> 9	112 7 <i>s</i> ²6 / ¹⁰	113 $7s^{27}p^{1}$	11+ 7 <i>s</i> ² 7• ²	115 $7s^2 p^3$	116 7 <i>s</i> 27 <mark>9</mark> 4	(117)	118 7 <i>s</i> ²7 _/ 5
-																		
		4f —			$58 \\ Ce \\ 6s^2 4f^1 5d^1$	59 Pr 6 <i>s</i> ² 4 <i>f</i> ³	60 Nd 6 <i>s</i> ² 4 <i>f</i> ⁴	61 Pm 6 <i>s</i> ² 4 <i>f</i> ⁵	62 Sm 6 <i>s</i> ² 4 <i>f</i> ⁶	63 Eu 6 <i>s</i> ² 4 <i>f</i> ⁷	$64 \\ \mathbf{Gd} \\ 6s^2 4f^7 5d^1$	65 Tb 6 <i>s</i> ² 4 <i>f</i> ⁹	66 Dy 6s ² 4f ¹⁰	67 Ho 6 <i>s</i> ² 4 <i>f</i> ¹¹	68 Er 6 <i>s</i> ² 4 <i>f</i> ¹²	69 Tm 6 <i>s</i> ² 4 <i>f</i> ¹³	70 Yb 6 <i>s</i> ² 4 <i>f</i> ¹⁴	71 Lu $6s^{2}4f^{14}5d^{1}$
		5f —			90 Th 7 <i>s</i> ² 6 <i>d</i> ²	91 Pa 7 <i>s</i> ² 5 <i>f</i> ² 6 <i>d</i> ¹	92 U $7s^25f^36d^1$	93 Np 7 <i>s</i> ² 5 <i>f</i> ⁴ 6 <i>d</i> ¹	94 Pu 7 <i>s</i> 25 <i>f</i> 6	95 Am 7 <i>s</i> ² 5 <i>f</i> ⁷	96 Cm 7 <i>s</i> ² 5 <i>f</i> ⁷ 6 <i>d</i> ¹	97 Bk 7 <i>s</i> ² 5 <i>f</i> 9	98 Cf $7s^25f^{10}$	99 Es 7 <i>s</i> ² 5 <i>f</i> ¹¹	100 Fm $7s^25f^{12}$	101 Md $7s^25f^{13}$	102 No 7 <i>s</i> ² 5 <i>f</i> ¹⁴	103 Lr 7 <i>s</i> ² 5 <i>f</i> ¹⁴ 6 <i>d</i> ¹

Classification of the Elements

1 1A				Repress	entative ts			Zinc Cadmiu Mercur	ım y								18 8A
1 H	2 2A			Noble §	gases			Lanthanides					14 4A	15 5A	16 6A	17 7A	2 He
3 Li	4 Be			Transit metals	ion		Actinides				5 B	6 C	7 N	8 O	9 F	10 Ne	
11 Na	12 Mg	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116	(117)	118

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

4

Electron Configurations of Cations and Anions Of Representative Elements

Na	[Ne]3s ¹	Na ⁺ [Ne]
Ca	[Ar]4s ²	Ca ²⁺ [Ar]

AI [Ne] $3s^23p^1$ Al³⁺ [Ne]

Ca²⁺ [Ar] Al³⁺ [Ne] Atoms lose electrons so that cation has a noble-gas outer electron configuration.

Atoms gain electrons so that anion has a noble-gas outer electron configuration. H 1s¹ H⁻ 1s² or [He]

F $1s^{2}2s^{2}2p^{5}$ F⁻ $1s^{2}2s^{2}2p^{6}$ or [Ne]

O $1s^22s^22p^4$ O²⁻ $1s^22s^22p^6$ or [Ne]

N $1s^22s^22p^3$ N³⁻ $1s^22s^22p^6$ or [Ne]

Cations and Anions Of Representative Elements

		+2											+3		ဗု	2	$\overline{\mathbf{x}}$	18 8A
1	Ⅱ 1 s ¹	2 2A											13 3 A	14 4A	15 5 A	16 6A	17 74	2 He 1 <i>s</i> ²
2	2 Li 23 ¹	4 Be 2 s ²											$\frac{\mathbf{B}}{2s^2 2p^1}$	$\begin{array}{c} 6 \\ \mathbf{C} \\ 2s^2 2p^2 \end{array}$	$\frac{7}{2s^{2}2p^{3}}$	$8 \\ C \\ 2s^{2}p^{4}$	9 F $2s^{2}2p^{5}$	10 Ne $2s^22p^6$
3	11 Na 31	2 Mg 3 s ²	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1 B	12 2B	13 A 1 3s ² 3p ¹	14 Si 3s ² 3p ²	$\frac{15}{13}$ $3s^23p^3$			18 Ar 3 <i>s</i> ² 3 <i>p</i> ⁶
4	19 K 431	20 Ca 4 s ²	$21 \\ Sc \\ 4s^2 3d^1$	$22 \\ \mathbf{Ti} \\ 4s^2 3d^2$	$23 \\ \mathbf{V} \\ 4s^2 3d^3$	24 Cr 4s ¹ 3d ⁵	25 Mn 4s ² 3d ⁵	26 Fe 4 <i>s</i> ² 3 <i>d</i> ⁶	27 Co 4 <i>s</i> ² 3 <i>d</i> ⁷	28 Ni 4 <i>s</i> ² 3 <i>d</i> ⁸	29 Cu $4s^{1}3d^{10}$	$30 \\ Zn \\ 4s^2 3d^{10}$	31 G a 4 <i>s</i> ² 4 <i>p</i> 1	32 Ge 4 <i>s</i> ² 4 <i>p</i> ²	33 As $4s^{2} p^{3}$	34. Se 4 <i>s</i> ²⁴ <i>p</i> ⁴	35 B I $4s^{24}p^{5}$	36 Kr 4 <i>s</i> ² 4 <i>p</i> ⁶
5	37 Rb 51	38 Sr 5 <i>s</i> ²	39 Y 5 <i>s</i> ² 4 <i>d</i> ¹	$40 \\ \mathbf{Zr} \\ 5s^2 4d^2$	41 Nb $5s^{1}4d^{4}$	42 Mo 5s ¹ 4d ⁵	43 Tc 5 <i>s</i> ² 4 <i>d</i> ⁵	44 Ru 5 <i>s</i> ¹ 4 <i>d</i> 7	$45 \\ Rh \\ 5s^{1}4d^{8}$	46 Pd $4d^{10}$	47 Ag $5s^{1}4d^{10}$	48 Cd $5s^{2}4d^{10}$	49 In 5 <i>s</i> ² 5 <i>p</i> 1	$50 \\ Sn \\ 5s^2 5p^2$	$5 \\ S_{0} \\ 5s^{2}5p^{3}$	51. T e 5s ² 5 p ⁴	53 I $5s^{2}5p^{5}$	54 Xe 5 <i>s</i> ² 5 <i>p</i> ⁶
6	55 Cs 63 ¹	:6 Ba 6 s ²	57 La $6s^25d^1$	72 Hf $6s^25d^2$	73 Ta $6s^25d^3$	74 W 6s ² 5d ⁴	75 Re 6s ² 5d ⁵	76 Os $6s^25d^6$	77 Ir 6 <i>s</i> ² 5 <i>d</i> ⁷	78 Pt 6 <i>s</i> ¹ 5 <i>d</i> 9	79 Au $6s^{1}5d^{10}$	80 Hg $6s^25d^{10}$	81 T1 6 <i>s</i> ² 6 <i>p</i> 1	82 Pb 6 <i>s</i> ² 6 <i>p</i> ²	83 Bi 6s ² 6p ³	84 Po 6s ² (p ⁴	85 A $6s^26p^5$	86 Rn 6 <i>s</i> ² 6 <i>p</i> ⁶
7	87 Fr 7 1	8 Ra 1 <i>s</i> ²	89 Ac 7 <i>s</i> ² 6 <i>d</i> ¹	104 Rf 7 <i>s</i> ² 6 <i>d</i> ²	105 Db $7s^{2}6d^{3}$	106 Sg 7 <i>s</i> ² 6 <i>d</i> ⁴	107 Bh 7 <i>s</i> ² 6 <i>d</i> ⁵	108 Hs 7 <i>s</i> ² 6 <i>d</i> ⁶	109 Mt 7 <i>s</i> ² 6 <i>d</i> 7	110 Ds 7 <i>s</i> ² 6 <i>d</i> ⁸	111 Rg 7 <i>s</i> ² 6 <i>d</i> ⁹	112 $7s^{2}6d^{10}$	1 3 7 <i>s</i> ²7 <i>p</i> 1	114 7 <i>s</i> ² 7 <i>p</i> ²	115 7 <i>s</i> ²1p³	115 7 <i>s</i> ²7 <i>p</i> 4	(117)	118 7 <i>s</i> ²⁷ p ⁶
•																		

\														
	58Ce $6s^24f^15d^1$	59 Pr 6 <i>s</i> ² 4 <i>f</i> ³	60 Nd 6 <i>s</i> ² 4 <i>f</i> ⁴	61 Pm 6 <i>s</i> ² 4 <i>f</i> ⁵	62 Sm 6 <i>s</i> ² 4 <i>f</i> ⁶	63 Eu 6 <i>s</i> ² 4 <i>f</i> ⁷	64 Gd $6s^24f^75d^1$	65 Tb 6 <i>s</i> ² 4 <i>f</i> 9	66 Dy 6 <i>s</i> ² 4 <i>f</i> ¹⁰	67 Ho 6 <i>s</i> ² 4 <i>f</i> ¹¹	68 Er 6 <i>s</i> ² 4 <i>f</i> ¹²	69 Tm 6s ² 4f ¹³	70 Yb $6s^24f^{14}$	71 Lu 6 <i>s</i> ² 4 <i>f</i> ¹⁴ 5 <i>d</i> ¹
	90 Th 7 <i>s</i> ² 6 <i>d</i> ²	91 Pa 7 <i>s</i> ² 5 <i>f</i> ² 6 <i>d</i> ¹	92 U 7 <i>s</i> ² 5 <i>f</i> ³ 6 <i>d</i> ¹	93 Np 7 <i>s</i> ² 5 <i>f</i> ⁴ 6 <i>d</i> ¹	94 Pu 7 <i>s</i> ² 5 <i>f</i> ⁶	95 Am 7 <i>s</i> ² 5 <i>f</i> ⁷	96 Cm $7s^25f^76d^1$	97 Bk 7 <i>s</i> 25 <i>f</i> 9	98 Cf 7 <i>s</i> ² 5 <i>f</i> ¹⁰	99 Es 7 <i>s</i> ² 5 <i>f</i> ¹¹	100 Fm 7 <i>s</i> ² 5 <i>f</i> ¹²	101 Md $7s^25f^{13}$	102 No 7 <i>s</i> ² 5 <i>f</i> ¹⁴	103 Lr 7 <i>s</i> ² 5 <i>f</i> ¹⁴ 6 <i>d</i> ¹

Isoelectronic: have the same number of electrons, and hence the same ground-state electron configuration

Na+: [Ne] Al³⁺: [Ne] F⁻: 1s²2s²2p⁶ or [Ne]

O²⁻: 1s²2s²2p⁶ or [Ne] N³⁻: 1s²2s²2p⁶ or [Ne]

Na⁺, Al³⁺, F⁻, O²⁻, and N³⁻ are all *isoelectronic* with Ne

What neutral atom is isoelectronic with H⁻?

H⁻: 1s² same electron configuration as He

When a cation is formed from an atom of a transition metal, electrons are always removed first from the ns orbital and then from the (n-1)d orbitals.

- Fe: [Ar]4s²3d⁶
- Fe²⁺: [Ar]4s⁰3d⁶ or [Ar]3d⁶
- Fe³⁺: [Ar]4s⁰3d⁵ or [Ar]3d⁵

Mn: [Ar]4s²3d⁵ Mn²⁺: [Ar]4s⁰3d⁵ or [Ar]3d⁵

Atomic Radii

metallic radius

covalent radius

Increasing atomic radius

10

Trends in Atomic Radii

Ionization energy is the minimum energy (kJ/mol) required to remove an electron from a gaseous atom in its ground state.

$$I_{1} + X_{(g)} \longrightarrow X^{+}_{(g)} + e^{-} \qquad I_{1} \text{ first ionization energy}$$
$$I_{2} + X^{+}_{(g)} \longrightarrow X^{2+}_{(g)} + e^{-} \qquad I_{2} \text{ second ionization energy}$$
$$I_{3} + X^{2+}_{(g)} \longrightarrow X^{3+}_{(g)} + e^{-} \qquad I_{3} \text{ third ionization energy}$$

$$I_1 < I_2 < I_3$$

IADL	E 0.2 The		Energies (kJ/mol) of	the First 2		ts
Z	Element	First	Second	Third	Fourth	Fifth	Sixth
1	Н	1,312					
2	He	2,373	5,251				
3	Li	520	7,300	11,815			
4	Be	899	1,757	14,850	21,005		
5	В	801	2,430	3,660	25,000	32,820	
6	С	1,086	2,350	4,620	6,220	38,000	47,261
7	Ν	1,400	2,860	4,580	7,500	9,400	53,000
8	Ο	1,314	3,390	5,300	7,470	11,000	13,000
9	F	1,680	3,370	6,050	8,400	11,000	15,200
10	Ne	2,080	3,950	6,120	9,370	12,200	15,000
11	Na	495.9	4,560	6,900	9,540	13,400	16,600
12	Mg	738.1	1,450	7,730	10,500	13,600	18,000
13	Al	577.9	1,820	2,750	11,600	14,800	18,400
14	Si	786.3	1,580	3,230	4,360	16,000	20,000
15	Р	1,012	1,904	2,910	4,960	6,240	21,000
16	S	999.5	2,250	3,360	4,660	6,990	8,500
17	Cl	1,251	2,297	3,820	5,160	6,540	9,300
18	Ar	1,521	2,666	3,900	5,770	7,240	8,800
19	Κ	418.7	3,052	4,410	5,900	8,000	9,600
20	Ca	589.5	1,145	4,900	6,500	8,100	11,000

.

13

Variation of the First Ionization Energy with Atomic Number

General Trends in First Ionization Energies

Increasing First Ionization Energy

Increasing First Ionization Energy

Electron affinity is the negative of the energy change that occurs when an electron is accepted by an atom in the gaseous state to form an anion.

$$X_{(g)} \neq e^{-} \longrightarrow X^{-}_{(g)}$$

$$F_{(g)} + e^{-} \longrightarrow X^{-}_{(g)} \quad \Delta H = -328 \text{ kJ/mol} \qquad EA = +328 \text{ kJ/mol}$$
$$O_{(g)} + e^{-} \longrightarrow O^{-}_{(g)} \quad \Delta H = -141 \text{ kJ/mol} \qquad EA = +141 \text{ kJ/mol}$$

TABLE 8.3 Electron Affinities (kJ/mol) of Some Representative Elements and the Noble Gases*

1A	2A	3 A	4 A	5 A	6 A	7 A	8 A
Н							He
73							< 0
Li	Be	В	С	Ν	Ο	F	Ne
60	≤ 0	27	122	0	141	328	< 0
Na	Mg	Al	Si	Р	S	Cl	Ar
53	≤ 0	44	134	72	200	349	< 0
Κ	Ca	Ga	Ge	As	Se	Br	Kr
48	2.4	29	118	77	195	325	< 0
Rb	Sr	In	Sn	Sb	Te	Ι	Xe
47	4.7	29	121	101	190	295	< 0
Cs	Ba	Tl	Pb	Bi	Ро	At	Rn
45	14	30	110	110	?	?	< 0

*The electron affinities of the noble gases, Be, and Mg have not been determined experimentally, but are believed to be close to zero or negative.

Variation of Electron Affinity With Atomic Number (H – Ba)

