King Saud University (College of science	Ch	emistry Dept.	430	Chem.		
MED EXAM (30 marks)				7-7-	1444 H		
Student name:			ID#:				
Instructions : Use the following	owing constants v	vhere app	olicable.				
F = 96485 C/mol e			98°K . Elec. C	hem. Series	is provided		
PART (I) True (V) or false	(X) questions (10	marks)					
1- For the following re	()						
2- In an electrochemic	()						
	3- Sodium (Na) ca be obtained by the electrolysis of NaCl(fused). ()						
4- For A^{2+} + ne \rightarrow A electrode we can increase the reduction potential by decreasing							
	[A^{2+}] from 0.12M to 0.06M.						
5- The electron transfer between an electrode and electroactive species becomes thermodynamically favorable when the fermi-level of the electrode is equal to the							
	LUMO of the reactant [O].						
	6- The Anodic reaction rate becomes faster when the applied potential is made more						
negative.							
7- If ($\propto = 0.3$) oxdati	7- If ($\propto = 0.3$) oxdation is favored which means the oxidation current increases more						
rapidly with η .					()		
8- The value of Tafel Slope depends on the area of the electrode surface.					()		
=	 9- The exchange current (I₀) is an extensive parameter. 10- Helmholtz double layer hypothesizes defused layer of opposite charges. 						
			Tyel of opposit	c charges.	\ /		
PART (II) multiple choice	questions (10 ma	<u>rks)</u>					
1)The cell in which e	electricity passes a	s a result	of chemical ch	ange is term	ned		
•	B) hydrolytic	•	faradic	D) Voltaic			
2)The units (αηF/RT			. <i>t</i> -1	D)::41			
A) Am ⁻² 3) If the standard fre	B) V	C) \		D) unitless			
•	2+/zn equals to (ls			
A) -1.61	B) + 1.61		+3.205	D) -3.502			
4) The potential of h	ydrogen electrode	in conta	ct with a soluti	ion whose			
$[H^{+}] = 1 \times 10^{-10} M$ equals (in V)							
A) 0.0951pH	B) -0.951pH	C) -	-0.951pH	D) 0.0 951p	ρΗ		
•	s) Sn ²⁺ (1M) A _{		•				
A) +1.82		B) -0.65	C) +C		D) +0.94		
6) $J A^{-1} s^{-1} =$							
, A) V		B) V ⁻¹	C) V	S	D) V s ⁻¹		

	7) For the electrode:	Pt Fe ³⁺ (0.1M), Fe ²⁺ (0	0.2M) calculate (E) at :	25°C ($E^0 = 0.771 \text{ V}$)	
	A) +0.375	B) -0.753	C) +0.753	D) +0.380	
	8) In order to find the	& the symmetry factor	y factor (∝) we have to		
	A) plot η (X) against Ι (Y)		B) plot η (Y) against Log I (X)		
	B) plot Log η (X) against Log I (Y)		D) plot η (X) against Log I (Y)		
	9) we may obtain the	e standard potential c	of a galvanic cell from t	he equation of	
	A) Nernst B) Van't Hof		B) Arrhenius D) None of of them		
	10) The strongest Re	ducing agent from th	e following (Cr , Hg , N	∕lg, Cl⁻) is	
	A) Cr	B) Mg	C) Cl ⁻ D) Hg	
	1- Calculate the mol	ar conductivity for 0.1	LM KCl (κ = 0.012896 Ω	2 ⁻¹ cm ⁻¹)? 2marks	
	2- Calculate the mea 2marks	n activity coefficient	for 0.001 M MgCl ₂ ?		

3- For $\eta=10$ mV , i = 0.62 mA through 2 cr , What will be i for $\eta=100$ mV ; $\alpha=0$	
$i = i_0 (e^{(1-\alpha)\eta F/RT} - e^{-\alpha\eta F/RT}).$	3 marks
4- An electrochemical galvanic cell based of	n the following two half reactions
$Zn^{2+}(0.01M) + 2e^{-} \rightarrow Zn(s)$ $CU^{2+}(0.0M) + 2e^{-} \rightarrow Cu(s)$	
overall reaction?	3 marks
a-Identify the anodic rection?	
b-Identify the cathodic rection?	
c-Write the cell overall reaction	
d-Calculate ΔG?	
e-Calculate the equilibrium constant K?	