

قسم الفيزياء والفلك

College of Sciences Department of Physics & Astronomy

	Final Exam	الامتحان النهائي	
Academ	ic Year 1444 H – 3 rd Semester	لعام الدراسي ٤٤٤ هـ - الفصل الثالث	١
	Exam Information	معلومات الامتحان	40
Course name:	General Physics II	فیزیاء عامة - ۲	اسم المقرر:
Course code:	104 PHYS	۱۰٤ فیز	رمز المقرر:
Exam date:	Monday 12/06/2023G	الاثنين ٢٣ / ١١ ٤ ٤ ٤ ٢ هـ	تاريخ الامتحان:
Exam time:	08:00 AM	۰۸:۰۰ صباحاً	وقت الامتحان:
Exam duration:	Three Hours	۳ ساعات	مدة الامتحان:

	معلومات الطالب/ـة Student Information	
Student's name:		اسم الطالب/ة:
Student ID no.:		الرقم الجامعي:
Section no.:		رقم الشعبة:
Roll no.:		رقم التحضير:
Exam room no.:		رقم قاعة الامتحان:
Lecturer's name:		اسم أستاذ/ة المقرر:

The exam consists of <u>32 QUESTIONS</u> and <u>7 PAGES</u> (including the cover page and the graph sheet) All answers are given in <u>MKS</u> (unless the unit is stated)

$k_e = 9 \times 10^9 \mathrm{N} \cdot \mathrm{m}^2 \cdot \mathrm{C}^{-2}$		$\varepsilon_0 = 8.85$	$\times 10^{-12} C^2 \cdot$	$N^{-1} \cdot m^{-2}$	$\mu_0 = 4$	$\mu_0 = 4\pi \times 10^{-7} \mathrm{T}\cdot\mathrm{m}\cdot\mathrm{A}^{-1}$		$ e = 1.6 \times 10^{-19} \mathrm{C}$					
$g = 9.8 \text{ m} \cdot \text{s}^{-2}$			$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$			m_e	$m_e=9.1\times 10^{-31}~\rm kg$			$m_p = 1.67 \times 10^{-27} \text{ kg}$			
Choo	Choose the letter of the correct answer (that fills the gray gap) for the following questions, then write it in <u>CAPITAL LETTER</u> in the appropriate box												
1	2	3	4	5	6	7	8	9	10	11	12		
A	С	В	С	А	С	D	В	D	В	D	А		
13	14	15	16	17	18	19	20	21	22	23	24		
A	В	D	А	С	С	В	D	В	D	A	С		
		25	26	27	28	29	30	31	32]			
		D	Α	D	C	В	Α	С	В				

Physical Constants

#	Questions	(1.25 mark for each)			
01.	Three-point charges are arranged as shown in the figure. If the resultant electric force on the charge $+2Q$ is zero, then the negative charge equals	ne ge ge	$\begin{array}{c} \bullet & a \\ \bullet & \bullet \\ +Q \\ \end{array} \begin{array}{c} \bullet \\ +2Q \end{array}$		
	A. -4 <i>Q</i> B2 <i>Q</i>	C.	$-Q$ D. $-\frac{1}{2}Q$		
02.	The figures below show four different config magnitude. The configuration that has the large	uratio est el	ons of point charges all having the same ectric field at the point P is configuration		
	A	B.			
	C. - <i>a p a</i> +	D.			
03.	If the magnitude of the electric field at a distance is E_1 , then at distance $r_2 = 2r_1$, the electric field	r_1 fro E_2 ec	om a line of positive charge of infinite length quals		
	A. $\frac{1}{4}E_1$ B. $\frac{1}{2}E_1$	C.	2 <i>E</i> ₁ D. 4 <i>E</i> ₁		
04.	An insulating solid sphere has a uniform volume reaches maximum .	charg	e density. The magnitude of its electric field		
	A. outside the sphere	B.	inside the sphere		
	C. at the surface of the sphere	D.	at the center of the sphere		
05.	An electron completes half of a circular orbit of radius $r = 2$ nm around a nucleus with charge Q = +3 e , as shown in the figure. As the electron moves from a to b, the change in the electric potential energy equals J.				
	A. 0 B. 3	C.	9 D. 12		
06.	The figure shows two points near a positive point charge. The ratio, $\frac{V_a}{V_b}$, of the electric potentials these two points is	nt at	$ - 1 \text{ mm} \rightarrow $ $a \qquad b$ $ - 1 \text{ mm} \rightarrow $ $a \qquad b$ $ - 1 \text{ mm} \rightarrow $		
	A. $\frac{1}{9}$ B. $\frac{1}{3}$	C.	3 D. 9		

07.	Three capacitors are shown in the figure, $10 \ \mu\text{F}$, $C_3 = 20 \ \mu\text{F}$ energy stored in C_2 is	connect where <i>C</i> F, and	ed to a battery as $C_1 = 15 \ \mu\text{F}, C_2 = V_0 = 30 \text{ V}.$ The $\mu\text{J}.$		V ₀ +		<i>C</i> ₃
	A. 200	В.	300	C.	450	D.	<mark>500</mark>
08.	A parallel-plate capa dielectric ($\kappa = 5.4$) difference of 16 V is the mica equals	acitor ha complete applied a kV/m	s a capacitance of ely filling the spa across the capaciton	f 120 nce b r plat) pF, a plate are etween the plat es, then the mag	a of 100 es. If an nitude of t	cm ² , and a mica electric potential he electric field in
	A. 2	<mark>B.</mark>	<u>4</u>	C.	6	D.	8
09.	The time it takes for a	10 ²⁰ elec	trons to pass throug	gh a p	point in a wire ca	rrying a 1	0-A current equals
	A. 0.2	B.	0.63	C.	1	D.	<mark>1.6</mark>
10.	If the resistance of a then the resistivity of	1-m lon	g copper wire that	has a	a radius of 2 mn	n was fou	nd to be $1.35 \text{ m}\Omega$,
	A. 0.7×10^{-8}	B.	1.7×10^{-8}	C.	2.7×10^{-6}	D.	107.4×10^{-6}
11.	The resistance of a pla indium. If the tempe temperature of the mo	atinum w erature co elt is	vire increased from pefficient of resisti °C.	30 Ω vity 1	at 20.0 °C to 46 for platinum is 3	Ω when in 3.92 × 10 ⁻¹	nmersed in molten $^{-3}(^{\circ}C)^{-1}$, then the
11.	The resistance of a pla indium. If the temper temperature of the mo A. 27	atinum w erature co elt is B.	rire increased from pefficient of resisting °C. 93	30 Ω vity ± C.	at 20.0 °C to 46 for platinum is 3 108	Ω when ir 3.92 × 10 D.	nmersed in molten ⁻³ (°C) ⁻¹ , then the <mark>156</mark>
11.	The resistance of a pla indium. If the temper temperature of the model A. 27 A potential difference resistance are A. $I = 0.2$ A and I C. $I = 7.3$ A and I	atinum w rature co elt is B. e of 220 R = 110 R = 110	rire increased from pefficient of resisti °C. 93 V is applied to a 44 DO Ω DO Ω	30 Ω vity ± C. W li B. D.	at 20.0 °C to 46 for platinum is 3 108 ghtbulb. The cur I = 0.2 A an I = 7.3 A an	Ω when ir 3.92 × 107 D. rent throu d R = 60 d R = 60	nmersed in molten $^{-3}(^{\circ}C)^{-1}$, then the 156 gh the bulb and its D0 Ω D0 Ω
11. 12. 13.	The resistance of a plaindium. If the temperature of the me A. 27 A potential difference resistance are A. $I = 0.2$ A and I C. $I = 7.3$ A and I An 8- Ω resistor is conshown in the figure. I with emf of 1.5 V and resistance is 0.30 Ω , the resistor is A.	atinum werature co elt is B. = of 220 = 110 = 110 = 110 nnected t If the batt then the o	 rire increased from pefficient of resisting of the constraint of the const	30 Ω vity 1 C. W li B. D.	at 20.0 °C to 46 for platinum is 3 108 ghtbulb. The cur I = 0.2 A an I = 7.3 A an	Ω when ir 3.92 × 107 D. rent throu d R = 60 d R = 60 + r - R - R - R	nmersed in molten $^{-3}(^{\circ}C)^{-1}$, then the 156 gh the bulb and its D0 Ω D0 Ω
11. 12. 13.	The resistance of a plaindium. If the temperature of the model of the	atinum werature co elt is B. rature coelt isB. $rature coelt isB.rature coelt isB.rature coelt isB.$	 rire increased from pefficient of resisting °C. 93 V is applied to a 44 D0 Ω D0 Ω o a battery, as tery is labeled ery's internal current in the 1.5 	30 Ω vity 1 C. W li B. D.	at 20.0 °C to 46 for platinum is 3 108 ghtbulb. The cur I = 0.2 A an I = 7.3 A an 12	$\Omega \text{ when ir}$ $3.92 \times 10^{\circ}$ $D.$ $R = 60^{\circ}$	nmersed in molten $^{-3}(^{\circ}C)^{-1}$, then the 156 gh the bulb and its D0 Ω D0 Ω J I J I 37
11. 12. 13. 14.	The resistance of a plaindium. If the temperature of the meta A. 27 A potential difference resistance are A. $I = 0.2$ A and I C. $I = 7.3$ A and I An 8- Ω resistor is conshown in the figure. I with emf of 1.5 V and resistance is 0.30 Ω , resistor is A. A. 0.18 A resistor is connected in parallel to the first	atinum werature co elt is B. B c of 220 R = 110 R = 110 R = 110 R = 110 nnected t If the batt then the of B. C C to a bat resistor,	rire increased from pefficient of resisting °C. 93 V is applied to a 44 DO Ω DO Ω To a battery, as tery is labeled ery's internal current in the 1.5 tery in a closed circ the total current of	30 Ω vity 1 C. W li B. D. C. c. c.	at 20.0 °C to 46 for platinum is 3 108 ghtbulb. The cur I = 0.2 A an I = 7.3 A an 12 f an additional un circuit will	Ω when ir 3.92 × 10- D. rent throu d R = 60 d R = 60 + r - M D. Name	nmersed in molten $^{-3}(^{\circ}C)^{-1}$, then the 156 gh the bulb and its D0 Ω D0 Ω J0 Ω J1 J1 37 sistor is connected

21.	For the current carrying wire shown in the figure, the magnitude of the magnetic field coming out from the page is maximum at
	A. point AB. point BC. point CD. point D
22.	Two parallel wires carrying currents I_1 and I_2 in opposite directions as shown in the figure. If $I_2 = 2I_1$, then $I_2 = I_1$, then $I_1 = I_2$
	A. $ \mathbf{F}_2 = \frac{1}{2} \mathbf{F}_1 $ B. $ \mathbf{F}_2 = 2 \mathbf{F}_1 $ C. $ \mathbf{F}_2 = 4 \mathbf{F}_1 $ D. $ \mathbf{F}_2 = \mathbf{F}_1 $
23.	If a 10-cm long solenoid generates a 1.47 mT magnetic field when a current of 1 A is flowing through it, then the number of the solenoid turns should be turns.A.117B.177C.227D.277
24.	The correct mathematical expression for Ampère's law for a closed loop is
	A. $\oint \mathbf{B} \cdot d\mathbf{A} = \mu_0 I$ B. $\oint \mathbf{B} \cdot d\mathbf{s} = 0$ C. $\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 I$ D. $\oint \mathbf{B} \cdot d\mathbf{A} = 0$
25.	A 25-cm long coil has a radius of 4 cm and 500 turns is placed in a region where a uniform magnetic field of magnitude 0.04 T makes an angle of 37° with the axis of the coil. Am emf of V will be induced if the magnetic field steadily reduces to zero in 0.2 s.A. 0.1B. 0.2C. 0.3D. 0.4
26.	A conducting bar of length 10 cm moves on two frictionless conducting parallel rails connected to a resistance (R) in the presence of a uniform 0.6-T magnetic field directed into the page, as shown in the figure. If the bar moves to the right with a constant speed of 2.5 m/s, then the induced emf equals V. A. 0.15 B. 0.24 C. 0.42 D. 20

27.	If the current changes unifor induced emf of the solenoid,	rmly from 0 to 6 A in is	3 μs	in a solenoid (L	= 2 ×	< 10 ^{−5} H),	the self-
	A. 20 V, in the same direct	ion of the current	B.	20 V, in opposite	direct	ion to the	current
	C. 40 V, in the same direct	ion of the current	D.	40 V, in opposite	direct	ion to the	current
28.	The magnetic field in a soler total energy stored in the sole	noid of cross-sectiona enoid is pJ.	l area	10^{-4} m ² and len	gth of	1 cm is 3	μT. The
	A. 1.2 B.	1.7	C.	<mark>3.6</mark>	D.	7.1	
29.	As shown in the circuit, $\Delta v(t) = 200 \sin(377t)$, when Δv is in volts, is connected 425Ω). The current in the A	a sinusoidal voltage ere t is in seconds and ed to a resistor ($R = C$ circuit is	e 1 =		<i>R</i>		
	A. $i(t) = 0.47 \sin(377t +$	π/2)	B.	$i(t) = 0.47\sin(3)$	377t)		
	C. $i(t) = 0.47 \sin(377t - $	π/2)	D.	$i(t) = 0.47\cos($	377t)		
30.	In the previous question	(Q.29), the average p	ower	delivered to the r	esistor	equals	W.
	A. 47 B.	94	C.	100	D.	200	
31.	An inductor has a 54 Ω reason.	ctance at 60.0 Hz. Tl	ne re	actance of the ind	luctor	at 50.0 H	z equals
	A. 27.0 B.	32.4	C.	<mark>45.0</mark>	D.	64.8	
32.	An AC power source (with series RLC circuit. If the free	adjustable frequency quency of the source is	and c s incr	constant voltage a reased in the circu	mplitu it, then	de) is app	lied to a
	A. the inductive reactance of	decreases	B.	the capacitive rea	ictance	decreases	
			D	.1 . 1			

"Wish you success and a bright future" ...

