

كلية العلوم

قسم الفيزياء والفلك

College of Sciences Department of Physics & Astronomy

Academ			
	Exam Information	معلومات الامتحان	30
Course name:	General Physics II	فيزياء عامة - ٢	اسم المقرر:
Course code:	104 PHYS	۱۰٤ فیز	رمز المقرر:
Exam date:	Tuesday 02/05/2023G	الثلاثاء ١٤٤٤/١٠/١٢ هـ	تاريخ الامتحان:
Exam time:	07:00 PM	۰،۰۰ مساء	وقت الامتحان:
Exam duration:	Two Hours	ساعتان	مدة الامتحان:

معلومات الطالب Student Information						
Student's name:		اسم الطالب:				
Student ID no.:		الرقم الجامعي:				
Section no.:		رقم الشعبة:				
Roll no.:		رقم التحضير:				
Exam room no.:		رقم قاعة الامتحان:				
Lecturer's name:		اسم أستاذ المقرر:				

The exam consists of <u>20 QUESTIONS</u> and <u>5 PAGES</u> (including the cover page and the graph sheet) All answers are given in <u>MKS</u> (unless the unit is stated)

<u>Physical Constants</u>						
$k_e = 9 \times 10^9 \mathrm{N} \cdot \mathrm{m}^2 \cdot \mathrm{C}^{-2}$	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{C}^2 \cdot \mathrm{N}^{-1} \cdot \mathrm{m}^{-2}$	$\mu_0 = 4\pi \times 10^{-7} \mathrm{T}\cdot\mathrm{m}\cdot\mathrm{A}^{-1}$	$ e = 1.6 \times 10^{-19} \mathrm{C}$			
$g = 9.8 \mathrm{m \cdot s^{-2}}$	$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$	$m_e=9.1\times 10^{-31}~\rm kg$	$m_p = 1.67 \times 10^{-27} \ \rm kg$			

Choo	Choose the letter of the correct answer and write it in <u>CAPITAL LETTER</u> in the appropriate box								
1	2	3	4	5	6	7	8	9	10
D	В	С	D	С	D	Α	В	А	Α
11	12	13	14	15	16	17	18	19	20
С	Α	В	С	В	D	D	Α	В	С

#		Questions				(<u>1.5 mark for each</u>)		
01.	Three electrons were removed from a neutral atom. The charge of the atom in (C) unit becomes:							
	A. -4.8×10^{-19}	B. -3×10^{-19}	C.	3×10^{-19}	D.	4.8×10^{-19}		
02.	$Q = 25 \mu\text{C}, q = 10 \mu\text{C},$ resultant electric force o	Three-point charges are arranged as shown in the figure, where $Q = 25 \ \mu\text{C}, \ q = 10 \ \mu\text{C}, \ \text{and} \ L = 40 \ \text{cm}.$ The magnitude of the resultant electric force on the charge q in (N) unit equals:						
	A. 14.06	B. 19.88	C.	22.15	D.	28.26		
03.	Three-point charges are arranged as shown in the figure, where d = 1 m. The magnitude of the resultant electric field at the origin 0 in (kN/C) unit equals: $7.00 \ \mu C$ d d d d d d d d							
	A. 63.24	B. 126.01	C.	<mark>178.19</mark>	D.	252.02		
04.	counterclockwise dire					-		
05.	Two positive charges, q_1 is correct about the magn A. $ F_{12} = 4 F_{21} $	nitude of the repulsiv	ve force	es acting on these	two charg	ges:		
06.	An electron enters a region of uniform electric field as shown in the figure, with $v_i = 3 \times 10^6$ m/s and $E = 200$ N/C. The horizontal length of the plates is $l = 0.1$ m. The magnitude and direction of the acceleration of the electron when it moves inside the electric field in (m/s ²) unit is: [ignore any gravitational effects]							
	A. 2.1×10^{13} in the direction of the <i>positive y axis</i> .							
	B. 2.1×10^{13} in the direction of the <i>negative y axis</i> .C. 3.5×10^{13} in the direction of the <i>negative y axis</i> .							
		irection of the negation of the position of th						
07					12m 1:	mator = 0.2 m		
07.	The total electric flux the equal to $5.0 \text{ N} \cdot \text{m}^2/\text{C}$. T A. 44.25	•		ι υ	-	ameter = 0.2 m) is 71.85		

08.	The electric field near a uniformly charged insulating plate is 130 N/C . If the area of the plate is 10 cm^2 , then the total charge on the plate in (pC) unit equals:						
	A. 1.1 B.	<mark>2.3</mark>	C.	3.2	D.	5.4	
09.	An infinite, uniformly charged, straight line has a charge density $\lambda = 4$ nC/m. The magnitude of						
	the electric field 2.5 m from				D	50.7	
	A. 28.8 B.	36.2	C.	43.4	D.	50.7	
10.	Three charges are arranged as shown in the figure, where $q_1 = +2Q$, $q_2 = +Q$ and $q_3 = -3Q$. The electric flux through the surfaces S1, S2 and S3 respectively are: $q_1 = +2Q$, $q_1 = +2Q$, $g_1 = +2Q$, $g_1 = +2Q$, $g_2 = +2Q$ and $q_3 = -3Q$. The electric flux through the surfaces S1, S2 $q_1 = +2Q$, $g_2 = +Q$ and $q_3 = -3Q$. The electric flux through the surfaces S1, S2 $q_1 = +2Q$, $g_2 = +Q$ and $q_3 = -3Q$. The electric flux through the surfaces S1, S2 $g_3 = -3Q$. The electric flux through through through the surf						
	A. $-Q/\epsilon_0$, $+3Q/\epsilon_0$ and -	$-2Q/\epsilon_0$					
	B. $+2Q/\epsilon_0$, $+Q/\epsilon_0$ and -	$-Q/\epsilon_0$					
	C. $+Q/\epsilon_0$, $-Q/\epsilon_0$ and -2	$2Q/\epsilon_0$					
	D. $-2Q/\epsilon_0, -3Q/\epsilon_0$ and	$+2Q/\epsilon_0$					
11.	For a point charge, q , place						
	of the spherical gaussian sur A. increase 4 times.	face is doubled	a. The tota B.	be doubled.	surface	e will:	
	A. increase 4 times.C. remain the same.		D.	reduce to half.			
12.		$a = \pm 2.0 \mathrm{nC}$					
12.	in the figure, then the poten equals:				a A	$\begin{array}{c} b & a \\ B & Q \end{array}$	
	A. <mark>+60</mark> B.	+72	C.	+84	D.	+96	
13.	Two positive charges of equal value (Q) are separated by a distance 2d. The net potential at the midpoint P between the two charges is:						
	A. Zero B.	$\frac{2k_eQ/d}{2k_eQ}$	C.	k _e Q/d	D.	$4k_eQ/d$	
14.	Assume a uniform electric field as shown in the figure. Which of the following is correct about the electric potential at the points A, B and C respectively: c						
	A. $V_A < V_B = V_C$		В.	$V_A = V_B < V_C$			
	C. V_A > V_B = V_C		D.	$V_A = V_B > V_C$			

15.	A proton starts from rest at point A and has a speed of 40 km/s at point B. Assuming only electric forces act on it during its motion, the potential difference $V_B - V_A$ in (V) unit equals:					
	A4.82	B. <mark>-8.35</mark>	С. –12.28	8 D.	-16.61	
16.	The unit farad (F) is equivalent to:				
	A. $C/(N \cdot m)$	B. $C^2/(N)$	m ²) C. C/(N \cdot	m ²) D.	$C^2/(N \cdot m)$	
17.	A parallel-plate capacitor with capacitance C_1 is charged using a battery with a terminal voltage difference ΔV_1 until it reached a charge Q_1 , then it was disconnected from the battery. If a dielectric material ($\kappa = 2$) is inserted between the two plates, then $Q_2 = Q_1$ and					
	A. $\Delta V_2 = \Delta V_1 a$	and $C_2 = 2C_1$.	B. $\Delta V_2 =$	$\frac{1}{2}\Delta V_1$ and $C_2 = C_2$	<u> </u>	
	C. $\Delta V_2 = \Delta V_1 a$	and $C_2 = C_1$.	D. $\Delta V_2 =$	$\frac{1}{2}\Delta V_1 \text{ and } C_2 = 2$	<mark><i>C</i>1.</mark>	
18.	A uniform electric field $E = 2000 \text{ V/m}$ exists within a certain region. The stored energy in a volume of 10 m ³ of this region due to the electric field in (J) unit equals:					
	A. 1.77×10^{-4}	B. 3.63 ×	10 ⁻⁴ C. 1.77	× 10 ⁻⁵ D.	3.63×10^{-5}	
19.	•	-	the figure, the magnitu ross the 4 nF capacitor		nF 6 nF 4 nF	
	A. 3	В. <mark>4</mark>	C. 8	D.	10	
20.	In the <i>previous question</i> (Q.19), the total energy stored by the system of capacitors in (nJ) unit is:					
	A. 20	B. 180	C. <mark>240</mark>	D.	480	

"Best wishes" ...

