College of Sciences
Department of Physics \& Astronomy
(ar.

The exam consists of 20 QUESTIONS and 5 PAGES (including the cover page and the graph sheet) All answers are given in MKS (unless the unit is stated)

Physical Constants

$k_{e}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}$	$\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \cdot \mathrm{~N}^{-1} \cdot \mathrm{~m}^{-2}$	$\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} \cdot \mathrm{~A}^{-1}$	$\|e\|=1.6 \times 10^{-19} \mathrm{C}$
$g=9.8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$	$N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$	$m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$	$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$

Choose the letter of the correct answer and write it in CAPITAL LETTER in the appropriate box

1	2	3	4	5	6	7	8	9	10
D	B	C	D	C	D	A	B	A	A
11	12	13	14	15	16	17	18	19	20
C	A	B	C	B	D	D	A	B	C

1. Three electrons were removed from a neutral atom. The charge of the atom in (C) unit becomes:
A. -4.8×10^{-19}
B. -3×10^{-19}
C. 3×10^{-19}
D. 4.8×10^{-19}
2. Three-point charges are arranged as shown in the figure, where $Q=25 \mu \mathrm{C}, q=10 \mu \mathrm{C}$, and $L=40 \mathrm{~cm}$. The magnitude of the resultant electric force on the charge q in (N) unit equals:

A. 14.06
B. 19.88
C. 22.15
D. 28.26
3. Three-point charges are arranged as shown in the figure, where $d=1 \mathrm{~m}$. The magnitude of the resultant electric field at the origin O in (kN / C) unit equals:

A. 63.24
B. 126.01
C. 178.19
D. 252.02
4. In the previous question ($\mathbf{Q . 0 3}$), the angle of the resultant electric field at the origin O in the counterclockwise direction with respect to the positive x-axis in $\left({ }^{\circ}\right)$ unit is:
A. 45
B. 135
C. 225
D. 315
5. Two positive charges, q_{1} and q_{2} are separated by a distance, d. If $q_{1}=4 q_{2}$, which of the following is correct about the magnitude of the repulsive forces acting on these two charges:
A. $\quad\left|F_{12}\right|=4\left|F_{21}\right|$
B. $\left|F_{12}\right|=\frac{1}{4}\left|F_{21}\right|$
C. $\left|\mathrm{F}_{12}\right|=\left|\mathrm{F}_{21}\right|$
D. $\quad\left|F_{12}\right|=2\left|F_{21}\right|$
6. An electron enters a region of uniform electric field as shown in the figure, with $v_{i}=3 \times 10^{6} \mathrm{~m} / \mathrm{s}$ and $E=200 \mathrm{~N} / \mathrm{C}$. The horizontal length of the plates is $l=$ 0.1 m . The magnitude and direction of the acceleration of the electron when it moves inside the electric field in $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
 unit is: [ignore any gravitational effects]
A. 2.1×10^{13} in the direction of the positive y axis.
B. 2.1×10^{13} in the direction of the negative y axis.
C. 3.5×10^{13} in the direction of the negative y axis.
D. 3.5×10^{13} in the direction of the positive y axis.
7. The total electric flux through a closed cylindrical surface (length $=1.2 \mathrm{~m}$, diameter $=0.2 \mathrm{~m}$) is equal to $5.0 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$. The net charge within the cylinder in (pC) unit equals:
A. 44.25
B. 53.12
C. 62.87
D. 71.85
8. The electric field near a uniformly charged insulating plate is $130 \mathrm{~N} / \mathrm{C}$. If the area of the plate is $10 \mathrm{~cm}^{2}$, then the total charge on the plate in (pC) unit equals:
A. 1.1
B. 2.3
C. 3.2
D. 5.4
9. An infinite, uniformly charged, straight line has a charge density $\lambda=4 \mathrm{nC} / \mathrm{m}$. The magnitude of the electric field 2.5 m from the axis of the line in (N/C) unit equals:
A. 28.8
B. 36.2
C. 43.4
D. 50.7
10. Three charges are arranged as shown in the figure, where $q_{1}=+2 Q$, $q_{2}=+Q$ and $q_{3}=-3 Q$. The electric flux through the surfaces S1, S2 and S 3 respectively are:

A. $-Q / \epsilon_{0},+3 Q / \epsilon_{0}$ and $-2 Q / \epsilon_{0}$
B. $+2 Q / \epsilon_{0},+Q / \epsilon_{0}$ and $-Q / \epsilon_{0}$
C. $+Q / \epsilon_{0},-Q / \epsilon_{0}$ and $-2 Q / \epsilon_{0}$
D. $-2 Q / \epsilon_{0},-3 Q / \epsilon_{0}$ and $+2 Q / \epsilon_{0}$
11. For a point charge, q, placed at the center of a spherical gaussian surface. When the radius of the spherical gaussian surface is doubled. The total flux, Φ_{E}, on this surface will:
A. increase 4 times.
B. be doubled.
C. remain the same.
D. reduce to half.
12. If $a=30 \mathrm{~cm}, b=20 \mathrm{~cm}, q=+2.0 \mathrm{nC}$, and $Q=-3.0 \mathrm{nC}$ in the figure, then the potential difference $V_{A}-V_{B}$ in (V) unit equals:

A. +60
B. +72
C. +84
D. +96
13. Two positive charges of equal value (Q) are separated by a distance $2 d$. The net potential at the midpoint P between the two charges is:
A. Zero
B. $2 k_{e} Q / d$
C. $k_{e} Q / d$
D. $4 k_{e} Q / d$
14. Assume a uniform electric field as shown in the figure. Which of the following is correct about the electric potential at the points A, B and C respectively:

A. $V_{A}<V_{B}=V_{C}$
B. $V_{A}=V_{B}<V_{C}$
C. $V_{A}>V_{B}=V_{C}$
D. $V_{A}=V_{B}>V_{C}$
15. A proton starts from rest at point A and has a speed of $40 \mathrm{~km} / \mathrm{s}$ at point B. Assuming only electric forces act on it during its motion, the potential difference $V_{B}-V_{A}$ in (V) unit equals:
A. -4.82
B.
8.35
C. -12.28
D. -16.61
16. The unit $\operatorname{farad}(\mathrm{F})$ is equivalent to:
A. $\mathrm{C} /(\mathrm{N} \cdot \mathrm{m})$
B. $\mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right)$
C. $\mathrm{C} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right)$
D. $\quad \mathrm{C}^{2} /(\mathrm{N} \cdot \mathrm{m})$
17. A parallel-plate capacitor with capacitance C_{1} is charged using a battery with a terminal voltage difference ΔV_{1} until it reached a charge Q_{1}, then it was disconnected from the battery. If a dielectric material $(\kappa=2)$ is inserted between the two plates, then $Q_{2}=Q_{1}$ and
A. $\Delta V_{2}=\Delta V_{1}$ and $C_{2}=2 C_{1}$.
B. $\Delta V_{2}=\frac{1}{2} \Delta V_{1}$ and $C_{2}=C_{1}$.
C. $\Delta V_{2}=\Delta V_{1}$ and $C_{2}=C_{1}$.
D. $\Delta V_{2}=\frac{1}{2} \Delta V_{1}$ and $C_{2}=2 C_{1}$.
18. A uniform electric field $E=2000 \mathrm{~V} / \mathrm{m}$ exists within a certain region. The stored energy in a volume of $10 \mathrm{~m}^{3}$ of this region due to the electric field in (J) unit equals:
A. 1.77×10^{-4}
B. 3.63×10^{-4}
C. 1.77×10^{-5}
D. 3.63×10^{-5}
19. For the system of capacitors shown in the figure, the magnitude

A. 3
B. 4
C. 8
D. 10
20. In the previous question (Q.19), the total energy stored by the system of capacitors in (nJ) unit is:
A. 20
B. 180
C. 240
D. 480

"Best wishes" ...

