

كلية العلوم

قسم الفيزياء والفلك

College of Sciences Department of Physics & Astronomy

الامتحان النهائي Final Exam العام الدراسي ٥٤٤٩هـ - الفصل الأول Academic Year 1445 H – 1st Semester								
	Exam Information	معلومات الامتحان	40					
Course name:	General Physics II	فیزیاء عامة - ۲	اسم المقرر:					
Course code:	104 PHYS	۲۰۴ فیز	رمز المقرر:					
Exam date:	Wednesday 13/12/2023 G	الأربعاء ٢٩ /٥. / ١٤٤٥ هـ	تاريخ الامتحان:					
Exam time:	01:00 PM	۰۱:۰۰ مساع	وقت الامتحان:					
Exam duration:	3 Hours	۳ ساعات	مدة الامتحان:					

	Student Information	معلومات الطالب/ـة	
Student's name:			اسم الطالب/ة:
Student ID no.:			الرقم الجامعي:
Section no.:			رقم الشعبة:
Roll no.:			رقم التحضير:
Exam room no.:			رقم قاعة الامتحان:
Lecturer's name:			اسم أستاذ/ة المقرر:

The exam consists of <u>32 QUESTIONS</u> and <u>7 PAGES</u> (including the cover page and the graph sheet)

All answers are given in <u>MKS</u> (unless the unit is stated)

$\frac{Physical Constants}{k_e = 9 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}} = 8.85 \times 10^{-12} \text{ C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2} \qquad \mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m} \cdot \text{A}^{-1} \qquad e = 1.6 \times 10^{-19} \text{ C}^{-10} $										
$k_e = 9 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$	$\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2}$	$\mu_0 = 4\pi \times 10^{-7} \mathrm{~T\cdot m\cdot A^{-1}}$	$ e = 1.6 \times 10^{-19} \text{ C}$							
$g = 9.8 \text{ m} \cdot \text{s}^{-2}$	$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$	$m_e = 9.1 \times 10^{-31} \text{ kg}$	$m_p = 1.67 \times 10^{-27} \text{ kg}$							

Choose the letter of the correct answer and write it in <u>CAPITAL LETTER</u> in the appropriate box

1	2	3	4	5	6	7	8	9	10	11	12
В	A	В	D	С	А	В	D	С	А	В	С
13	14	15	16	17	18	19	20	21	22	23	24
D	D	С	A	D	С	D	А	D	В	С	В
		25	26	27	28	29	30	31	32	- -	
		С	A	В	A	С	А	D	В	Ť	

#			Questions	(<u>1.25 marks for each</u>)
01.	Three-point charge where $q_1 = +6 \mu 0$ d = 2 m. The mag the origin O in (kN	s are arranged as shown in C, $q_2 = +9 \ \mu$ C, $q_3 = -$ nitude of the resultant electrony N/C) unit equals:	n the figure, 3 μ C and ctric field at	$y + q_1$ $d = 0$ $d = q_3 + x$ $d + q_2$
	A. 6.75	B. 9.55	C. 13.50	D. 19.09
02.	In the <i>previous que</i> respect to the posit	estion (Q.01), the angle of ive x-axis in (°) unit equals	the resultant electric field	at the origin counterclockwise with
	A. 45	B. 135	C. 205	D. 295
03.	A proton is accele uniform electric fi figure. The final s distance $l = 0.4$ m in (km/s) unit is: [1	rated from rest in the directed from rest in the directed $E = 150 \text{ N/C}$ as shapeed of the proton when a in the direction of the exignore any gravitational effects.	ection of a nown in the it travels a electric field fects]	Ē
	A. 93	B. 107	C. 111	D. 144
04.	The total flux thro volume within the	bugh an insulating solid s sphere in (nC/m^3) unit is:	phere (radius = 0.2 m) is	12 N \cdot m ² /C. The charge per unit
	A. 1.06	B. 1.84	C. 2.37	D. 3.17
05.	A solid, insulating charge density ρ a this sphere is an u whose inner and ou figure. The electric with the number:	g sphere of radius a has and a total charge Q . Con- uncharged, conducting ho uter radii are b and c , as s c field vanishes in the reg	a uniform centric with llow sphere hown in the ion labelled	Insulator Conductor b c 3 4
	A. 1	B. 2	C. 3	D. 4
06.	The electric field $A = 5 \text{ cm}^2$, then the	just above a large flat instead of the sheet	sulated sheet is 175 N/C. in (pC) is:	If the surface area of the sheet is
	A. 1.55	B. 2.25	C. 2.75	D. 3.10

13.	An ion beam with 20 n charge of each ion in (C	A current strikes a plat) unit is:	e. If 1.875×10^{18} ions stri	ke the plate each minute, then the
	A. 1.6×10^{-19}	B. 3.2×10^{-19}	C. 4.8×10^{-19}	D. 6.4×10^{-19}
14.	If a current density of 6 field in the metal in (N/	$\times 10^7$ A/m ² exists in a C) unit is:	a metal with resistivity of 1	$10 \times 10^{-8} \ \Omega \cdot m$, then the electric
	A. 1	B. 2	C. 4	D. <mark>6</mark>
15.	A 96-W power adapter	nas output voltage of 20	.5 V. The current delivered	d by the adapter in (A) unit is:
	A. 1.9	B. 3.8	C. 4.7	D. 5.7
16.	For the circuit shown in to the 1 Ω resistance in	n the figure, the power (W) unit is:	delivered	$\begin{array}{c} 2 \Omega \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	A. 4	B. 12	C. 24	D. 48
17.	A parallel combination of area are connected to a A. $\Delta V_1 < \Delta V_2$	of two equal length wire pattery. If $A_1 > A_2$ then: B. $\Delta V_1 > \Delta V_2$	The same from the same matter C . $I_1 < I_2$	erial with different cross sectional D. $I_1 > I_2$
18.	For the circuit shown is through point Q in (A)	n the figure, the currer unit is:	At running $I = 2 A$	$\begin{array}{c} & Q \\ & 4 \Omega \\ & N \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\$
	A. 0.25	B. 0.5	C. 1	D. 2
19.	The figures below show with velocities and mag $B_{in} \times \times$	y four different diagram netic field directions as $\mathbf{B}_{in} \times \mathbf{A}_{in} \times \mathbf$	as of a negatively charged indicated. The diagrams the \mathbf{B}_{out} \mathbf{v} 	particle traveling in circular orbit at represent the correct orbit are: $B_{out} \qquad \textcircled{4}$
		D. diagranis J allu	T. C. ulagrafilis 2 allu	T. D. diagrams I allu J.

20.	A 3 m long wire, carryin angle of 30° to a uniform in the figure. The magnet is:	g 15 A current, is placed 2.5 T magnetic field, as s ic force on the wire in (N	at an hown () unit		<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>
	A. 56.3	B. 74.1	C.	80.3	D. 112.5
21.	A magnetic field $B = 0$, ionized ion $(Q = e)$ R = 0.23 m. If the ion v = 45 km/s, then the m	4 T is used to bend a s into a curved path of n enters the field with ass of the ion in (kg) unit	singly radius speed is:	+	$\begin{array}{c} & & & \mathbf{B}_{\mathrm{in}} \\ & & \mathbf{R} \\ \times & \times & \times & \times \\ \times & \times & \times & \times \\ \times & \times &$
	A. 1.8×10^{-28}	B. 3.27×10^{-28}	C.	1.8×10^{-25}	D. 3.27×10^{-25}
22.	Two parallel 37-m wires magnitude of the magneti A. 0.10	separated by 1.2 cm each c force exerted on each wi B. 0.14	n carryi ire in (I C.	ing a current of 15 N) unit is: 0.22	A in opposite directions. The D. 0.37
23.	The figure shows 5 wi perpendicular to the page for the closed loops in the	res each carrying a curr e. The magnitude of $\oint \mathbf{H}$	rent I $3 \cdot d\mathbf{s}$		Loop 2
		ingure can be fanked as.			I in Loop I in Sout 3
	A. 2 < 1 < 3	 B. 3 < 1 < 2 	C.	Loop (1) I_{out} 2 < 3 < 1	D. $3 < 2 < 1$
24.	A. $2 < 1 < 3$ The unit of the permeability A. $\frac{N \cdot m^2}{A}$	B. $3 < 1 < 2$ ity of free space (μ_0) is equal by $\frac{N}{A^2}$	C. uivalen C.	Loop 1 I_{out} 2 < 3 < 1 at to: $\frac{N}{A \cdot m}$	D. $3 < 2 < 1$ D. $\frac{N \cdot A}{m}$
24.	A. $2 < 1 < 3$ The unit of the permeabil A. $\frac{N \cdot m^2}{A}$ A coil of area 50 cm ² has coil is reduced from 0.2 coil in (V) unit is:	B. $3 < 1 < 2$ ity of free space (μ_0) is equal by $\frac{N}{A^2}$ B. $\frac{N}{A^2}$ is 1000 turns. If a uniform T to zero in 0.2 s, the matrix	C. uivalen C. magne agnitud	Loop (1) I_{out}	D. $3 < 2 < 1$ D. $\frac{N \cdot A}{m}$ erpendicular to the plane of the ectromotive force (emf) in the

26.	A conducting bar of length frictionless conducting paral resistance ($R = 10 \Omega$) in the magnetic field directed into the figure. If the bar moves to the of 150 m/s, then the current equals:	h 6 cm moves on two llel rails connected to a presence of a uniform 2-T the page, as shown in the right with a constant speed to in the circuit in (A) unit	$ \begin{array}{c} \mathbf{B}_{\mathrm{ir}}\\ \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \\ \times & \times &$	x x
	A. 1.8 B.	2.4 C.	3.2	D. 4.6
27.	A self induced electromotive f the coil is increasing at a rate of A. 10.2 B.	Force (emf) of 50 mV is inc of 2.2 A/s. The inductance 22.7 C.	luced in the windings of L of the coil in (mH) us 42.3	a coil when the current in nit is: D. 55.3
28.	The energy stored in a 50-mH	inductor carrying a current	of 4 A in (J) unit is:	
	A. 0.4 B.	2 C.	50	D. 200
29.	As shown in the circuit $\Delta v(t) = 100 \sin(1000t)$, when in volts, is applied to a since $R = 400 \ \Omega$, $C = 5 \ \mu$ F, and $R = 400 \ \Omega$ in the circuit in (Ω) unit is	, a sinusoidal voltage re t is in seconds and Δv is eries <i>RLC</i> circuit with L = 0.5 H. The impedance s:		$\begin{array}{c} L \\ & C \\ \\ \hline \\ & \\ \\ \\ \\ \Delta v(t) \end{array}$
	A. 50 B.	100 C.	500	D. 1000
30.	In the <i>previous question</i> (Q.2	9), the voltage leads the app	blied current in the RLC	C circuit by:
	A. 36.9° B.	43.2° C.	64.5°	D. 85.3°
31.	In the <i>previous question</i> (Q.2	9), the resonance frequency	(ω_0) of the circuit in (r	rad/s) equals:
	A. 59.3 B.	264.3 C.	417.5	D. 632.5
32.	In a series <i>RLC</i> AC circuit $\Delta v(t) = 100 \sin(\omega t)$ and $i(t)$ is in amperes. Then the averag A. 1.5 B.	t, if the instantaneous vol = $100 \sin(\omega t + \pi/3)$ response power in (kW) unit is: 2.5 C.	tage and the instantance ectively, where <i>t</i> is in se 5.5	eous current are given by econds, Δv is in volts, and <i>i</i> D. 10.5

(End of Questions) Best wishes..

			 								 -			 		 	
					-				-		_		 _				
-											-		-				
					-	-			-		-		-				
					-				-		_		 -				
			 								 _	 				 	
			 								 -						
-	-				-				-		-		-				
					-	-			-		_		-				
											1						
					-	-			-		\rightarrow		-	 			
					-	-					 		 	 			
					-						-		-				
											_		 				
											-						
													-				
					-				-		_		 -				