College of Sciences
كلية اللعوم
Department of Physics \& Astronomy

Final Exam Academic Year 1445 H-1 ${ }^{\text {st }}$ Semester		الامتحان النهائي العام الدراسي 0 ؛ ؛ ا هـ ـ الفصل الأول	40
	Exam Information	معلومات الامتحان	
Course name:	General Physics II	¢ فيزياء عامة -	(اسم المقر:
Course code:	104 PHYS	\& ¢ 1 ف فيز	رمز المقرر:
Exam date:	Wednesday 13/12/2023 G		تاريخ الامتحان:
Exam time:	01:00 PM	\% 1 • •	وقت الامتحان:
Exam duration:	3 Hours	r	مدة الامتحان:

Student Information		معلومات الطالب/ة	
Student's name:			(اسم الطالب/-4
Student ID no.:			الرقم الجامعي:
Section no.:			رقم الشعبة:
Roll no.:			رقم التحضير:
Exam room no.:			رقم قاعة الامتحان:
Lecturer's name:			اسم أستاذ/ة المقرى:

The exam consists of 32 OUESTIONS and 7 PAGES (including the cover page and the graph sheet)
All answers are given in MKS (unless the unit is stated)

Physical Constants

$k_{e}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}$	$\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \cdot \mathrm{~N}^{-1} \cdot \mathrm{~m}^{-2}$	$\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} \cdot \mathrm{~A}^{-1}$	$\|e\|=1.6 \times 10^{-19} \mathrm{C}$
$g=9.8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$	$N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$	$m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$	$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$

Choose the letter of the correct answer and write it in CAPITAL LETTER in the appropriate box

1	2	3	4	5	6	7	8	9	10	11	12
B	A	B	D	C	A	B	D	C	A	B	C
13	14	15	16	17	18	19	20	21	22	23	24
D	D	C	A	D	C	D	A	D	B	C	B
		25	26	27	28	29	30	31	32		
		C	A	B	A	C	A	D	B		

1. Three-point charges are arranged as shown in the figure, where $q_{1}=+6 \mu \mathrm{C}, q_{2}=+9 \mu \mathrm{C}, q_{3}=-3 \mu \mathrm{C}$ and $d=2 \mathrm{~m}$. The magnitude of the resultant electric field at the origin O in $(\mathrm{kN} / \mathrm{C})$ unit equals:

A. 6.75
B. 9.55
C. 13.50
D. 19.09
2. In the previous question (Q.01), the angle of the resultant electric field at the origin counterclockwise with respect to the positive x-axis in $\left({ }^{\circ}\right)$ unit equals:
A. 45
B. 135
C. 205
D. 295
3. A proton is accelerated from rest in the direction of a uniform electric field $E=150 \mathrm{~N} / \mathrm{C}$ as shown in the figure. The final speed of the proton when it travels a distance $l=0.4 \mathrm{~m}$ in the direction of the electric field in (km / s) unit is: [ignore any gravitational effects]

A. 93
B. 107
C. 111
D. 144
4. The total flux through an insulating solid sphere (radius $=0.2 \mathrm{~m}$) is $12 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$. The charge per unit volume within the sphere in $\left(\mathrm{nC} / \mathrm{m}^{3}\right)$ unit is:
A. 1.06
B. 1.84
C. 2.37
D. 3.17
5. A solid, insulating sphere of radius a has a uniform charge density ρ and a total charge Q. Concentric with this sphere is an uncharged, conducting hollow sphere whose inner and outer radii are b and c, as shown in the figure. The electric field vanishes in the region labelled with the number:

A. 1
B. 2
C. 3
D. 4
6. The electric field just above a large flat insulated sheet is $175 \mathrm{~N} / \mathrm{C}$. If the surface area of the sheet is $A=5 \mathrm{~cm}^{2}$, then the total charge of the sheet in (pC) is:
A. 1.55
B. 2.25
C. 2.75
D. 3.10
7. Consider two identical charged particles each with a charge q arranged as shown in the figure. If the electric potential at the point P is V_{p}, then the magnitude of each
 of the charges is:
A. $\frac{V_{p} a^{2}}{2 k_{e}}$
B. $\frac{V_{p} a}{2 k_{e}}$
C. $\frac{V_{p} a}{k_{e}}$
D. $\frac{V_{p} a^{2}}{k_{e}}$
8. Two-point charges lie along the x-axis and are arranged as shown in the figure, where $q_{1}=5 \mathrm{C}, q_{2}=-15 \mathrm{C}$, and $d=4 \mathrm{~m}$. The electric potential equals zero at the point P when the distance a in (m) unit equals:

A. 0.25
B. 0.5
C. 0.75
D. 1
9. The figures below show four arrangements of charged particles placed at the vertices of an equilateral triangle. The arrangements with the lowest electric potential energy are:

A. diagrams 1 and 2 .
B. diagrams 3 and 4 .
C. diagrams 2 and 3 .
D. diagrams 1 and 4 .
10. The equivalent capacitance (C_{eq}) of the capacitors shown in the figure is:

A. C
B. $2 C$
C. $3 C$
D. $4 C$
11. A series combination of two capacitors, $C_{1}=18 \mu \mathrm{~F}$ and $C_{2}=36 \mu \mathrm{~F}$, are connected in to a $12-\mathrm{V}$ battery. The energy stored in the capacitor C_{1} in $(\mu \mathrm{J})$ unit will be:
A. 288
B. 576
C. 856
D. 1728
12. A parallel combination of two identical capacitors, C_{1} and C_{2}, are connected to a battery. If we insert a dielectric slab (with $\kappa=2$) between the plates of the capacitor C_{1}, then at equilibrium:
A. $\Delta V_{1}=2 \Delta V_{2}$
B. $\Delta V_{1}=\frac{\Delta V_{2}}{2}$
C. $Q_{1}=2 Q_{2}$
D. $Q_{1}=\frac{Q_{2}}{2}$
13. An ion beam with 20 mA current strikes a plate. If 1.875×10^{18} ions strike the plate each minute, then the charge of each ion in (C) unit is:
A. 1.6×10^{-19}
B. 3.2×10^{-19}
C. 4.8×10^{-19}
D. 6.4×10^{-19}
14. If a current density of $6 \times 10^{7} \mathrm{~A} / \mathrm{m}^{2}$ exists in a metal with resistivity of $10 \times 10^{-8} \Omega \cdot \mathrm{~m}$, then the electric field in the metal in (N / C) unit is:
A. 1
B. 2
C. 4
D. 6
15. A $96-\mathrm{W}$ power adapter has output voltage of 20.5 V . The current delivered by the adapter in (A) unit is:
A. 1.9
B. 3.8
C. 4.7
D. 5.7
16. For the circuit shown in the figure, the power delivered to the 1Ω resistance in (W) unit is:

A. 4
B. 12
C. 24
D. 48
17. A parallel combination of two equal length wires made from the same material with different cross sectional area are connected to a battery. If $A_{1}>A_{2}$ then:
A. $\Delta V_{1}<\Delta V_{2}$
B. $\Delta V_{1}>\Delta V_{2}$
C. $I_{1}<I_{2}$
D. $I_{1}>I_{2}$
18. For the circuit shown in the figure, the current running through point Q in (A) unit is:

A. 0.25
B. 0.5
C. 1
D. 2
19. The figures below show four different diagrams of a negatively charged particle traveling in circular orbit with velocities and magnetic field directions as indicated. The diagrams that represent the correct orbit are:

A. diagrams 1 and 2 .

20. A 3 m long wire, carrying 15 A current, is placed at an angle of 30° to a uniform 2.5 T magnetic field, as shown in the figure. The magnetic force on the wire in (N) unit is:

A. 56.3
B. 74.1
C. 80.3
D. 112.5
21. A magnetic field $B=0.4 \mathrm{~T}$ is used to bend a singly ionized ion $(Q=|e|)$ into a curved path of radius $R=0.23 \mathrm{~m}$. If the ion enters the field with speed $v=45 \mathrm{~km} / \mathrm{s}$, then the mass of the ion in (kg) unit is:

A. 1.8×10^{-28}
B. 3.27×10^{-28}
C. 1.8×10^{-25}
D. 3.27×10^{-25}
22. Two parallel $37-\mathrm{m}$ wires separated by 1.2 cm each carrying a current of 15 A in opposite directions. The magnitude of the magnetic force exerted on each wire in (N) unit is:
A. 0.10
B. 0.14
C. 0.22
D. 0.37
23. The figure shows 5 wires each carrying a current I perpendicular to the page. The magnitude of $\oint \mathbf{B} \cdot d \mathbf{s}$ for the closed loops in the figure can be ranked as:

A. $2<1<3$
B. $3<1<2$
C. $2<3<1$
D. $3<2<1$
24. The unit of the permeability of free space $\left(\mu_{0}\right)$ is equivalent to:
A. $\frac{\mathrm{N} \cdot \mathrm{m}^{2}}{\mathrm{~A}}$
B. $\frac{\mathrm{N}}{\mathrm{A}^{2}}$
C. $\frac{\mathrm{N}}{\mathrm{A} \cdot \mathrm{m}}$
D. $\frac{\mathrm{N} \cdot \mathrm{A}}{\mathrm{m}}$
25. A coil of area $50 \mathrm{~cm}^{2}$ has 1000 turns. If a uniform magnetic field directed perpendicular to the plane of the coil is reduced from 0.2 T to zero in 0.2 s , the magnitude of the induced electromotive force (emf) in the coil in (V) unit is:
A. 1
B. 2
C. 5
D. 10
26. A conducting bar of length 6 cm moves on two frictionless conducting parallel rails connected to a resistance $(R=10 \Omega)$ in the presence of a uniform 2-T magnetic field directed into the page, as shown in the figure. If the bar moves to the right with a constant speed of $150 \mathrm{~m} / \mathrm{s}$, then the current in the circuit in (A) unit equals:

A. 1.8
B. 2.4
C. 3.2
D. 4.6
27. A self induced electromotive force (emf) of 50 mV is induced in the windings of a coil when the current in the coil is increasing at a rate of $2.2 \mathrm{~A} / \mathrm{s}$. The inductance L of the coil in (mH) unit is:
A. 10.2
B. 22.7
C. 42.3
D. 55.3
28. The energy stored in a $50-\mathrm{mH}$ inductor carrying a current of 4 A in (J) unit is:
A. 0.4
B. 2
C. 50
D. 200
29. As shown in the circuit, a sinusoidal voltage $\Delta v(t)=100 \sin (1000 t)$, where t is in seconds and Δv is in volts, is applied to a series $R L C$ circuit with $R=400 \Omega, C=5 \mu \mathrm{~F}$, and $L=0.5 \mathrm{H}$. The impedance (Z) of the circuit in (Ω) uint is:

A. 50
B. 100
C. 500
D. 1000
30. In the previous question (Q.29), the voltage leads the applied current in the $R L C$ circuit by:
A. 36.9°
B. 43.2°
C. 64.5°
D. 85.3°
31. In the previous question (Q.29), the resonance frequency $\left(\omega_{0}\right)$ of the circuit in (rad/s) equals:
A. 59.3
B. 264.3
C. 417.5
D. 632.5
32. In a series $R L C$ AC circuit, if the instantaneous voltage and the instantaneous current are given by $\Delta v(t)=100 \sin (\omega t)$ and $i(t)=100 \sin (\omega t+\pi / 3)$ respectively, where t is in seconds, Δv is in volts, and i is in amperes. Then the average power in (kW$)$ unit is:
A. 1.5
B. 2.5
C. 5.5
D. 10.5

