

كلية العلوم

قسم الفيزياء والفلك

College of Sciences Department of Physics & Astronomy

Ac	First Midterm Exam ademic Year 1445 H – 1st Semester	الامتحان الفصلي الأول العام الدراسي ٥ ٤ ٤ ٢ هـ - الفصل الأول	
1			15
	Exam Information	معلومات الامتحان	15
Course name:	General Physics II	فیزیاء عامة - ۲	اسم المقرر:
Course code:	104 PHYS	۱۰ ٤ فيز	رمز المقرر:
Exam date:	Thursday 05/10/2023G	الخميس ۲۰ / ۳۰ / ۱٤٤٥ هـ	تاريخ الامتحان:
Exam time:	07:00 PM	۰۷:۰۰ مساع	وقت الامتحان:
Exam duration:	1.5 Hours	ساعة ونصف	مدة الامتحان:

	معلومات الطالب Student Information	
Student's name:		اسم الطالب:
Student ID no.:		الرقم الجامعي:
Section no.:		رقم الشعبة:
Roll no.:		رقم التحضير:
Exam room no.:		رقم قاعة الامتحان:
Lecturer's name:		اسم أستاذ المقرر:

The exam consists of <u>15 QUESTIONS</u> and <u>5 PAGES</u> (including the cover page and the graph sheet)

All answers are given in <u>MKS</u> (unless the unit is stated)

Physical Constants

$k_e = 9 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$	$\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2}$	$\mu_0 = 4\pi \times 10^{-7} \mathrm{~T\cdot m \cdot A^{-1}}$	$ e = 1.6 \times 10^{-19} \text{ C}$
$g = 9.8 \text{ m} \cdot \text{s}^{-2}$	$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$	$m_e = 9.1 \times 10^{-31} \text{ kg}$	$m_p = 1.67 \times 10^{-27} \text{ kg}$

Choose the letter of the correct answer and write it in <u>CAPITAL LETTER</u> in the appropriate box

1	2	3	4	5	6	7	8	9	10
А	С	А	С	С	С	В	А	D	А

11	12	13	14	15
D	D	В	В	D

07.	An in through sphere	sulating solid sphere ghout its volume. Th e in (MV/m) unit is:	of radius 18 e magnitude	cm has a total of the electric	posi field	tive charge of at a distance of	22 μ C un of 9 cm fr	ifori om t	nly distributed he center of the
	A. (0.6	В. <mark>3.1</mark>		C.	6.1		D.	9.4
08.	The e sheet	electric field just above in $(\mu C/m^2)$ unit equ	ve a large fla als:	t conducting sh	eet i	s 175 kN/C. T	he surfac	e ch	arge density on the
	А.	1.55	B. 3.15		C.	6.25		D.	9.35
09.	For a	charged particle that	travels a dis	stance d in the s	ame	direction of a	uniform e	elect	ric field E:
	A. t	he electric potential	increases by	E/d.					
	B. t	he electric potential	decreases by	E/d.				Γ	
	C. t	he electric potential	increases by	Ed.		-			
	D.	he electric potential	decreases by	<mark>Ed.</mark>					
10.	Atar	point located 5.0 cm	away from a	a positive point	char	a = 10 nC	the elex	tric 1	potential in (kV) unit
	equal	s:	uwuy nome	, positive point		5 - B5.0	, ine cred		
	A.	<mark>1.8</mark>	B. 3.6		C.			D.	36
11.	The u	nit <i>Volt</i> (V) is equiva	alent to:						
	A. (C/J	B. J·m/0	2	C.	$N \cdot C/m$		D.	<mark>N ⋅ m /C</mark>
12.	An ai then c measu shown comp	r-filled parallel plate disconnected from th ured and found to be n in the figure. If a d letely fills the space	capacitor is e battery. Th 85 V betwe ielectric is d between the	fully charged a e voltage was en the plates as irectly inserted plates then:	nd and) (
	A. 1	the charge remains th	e same whil	e the voltage in	crea	ses.			
	B. 1	the charge increases	while the vo	ltage drops.					
	C. 1	both the charge and v	voltage decre	ease.					
	D.	the charge remains th	e same whil	e the voltage di	ops.				
13.	A pot with a	ential difference of 1 a surface charge dens	50 V is app sity $\sigma = 30$	lied to a paralle nC/cm ² . The sp	l-pla pacin	te capacitor. T	he plates plates in	beco (µm	ome fully charged a) should be:
	A. 2	2.1	B. <mark>4.4</mark>		C.	9.7		D.	13.7

14.	Three capacitors are c all of the three capacit (C = 100 nF). Then unit equals:	onnected as shown is ors have the same c the equivalent capac	in the figure. If apacitance citance in (nF)	V_0 $+$ C_2 C_3
	A. 33	В. <mark>67</mark>	C. 150	D. 300
15.	In the <i>previous questi</i> capacitor?	<i>on</i> (Q.14), which or	n of the following is tru	e about the energy stored in each

Α	$U_1 > U_2 > U_2$	B $U_1 < U_2 < U_2$	$C U_1 < U_2 = U_2$	D $U_1 > U_2 = U_2$
11.		\mathbf{D}	\mathbf{O}	$D_{1} = 0$

			 				 			 	_					 			
		_	 								-		_			 			
											_		_	-					
-																-			
														-		-			
							 							-		_			
			 								-					 			
			 							 	_					 			
											-								
											_		_						
								-											
-					-									-		-			
											_		_	-		_	_	_	
		-			-						-			-		-		-	
							 			 	-			-		 			
							 			 			_	-					
					-						-			-		-			
													_			 			
			 					-		 	_					 			