College of Sciences
كلية العلوم
Department of Physics \& Astronomy

Second Midterm Exam Academic Year 1445 H-1 ${ }^{\text {st }}$ Semester		الامتحان الفصلي الثاني العام الاراسي 0 ؛ ؛ الهـ ـ ـ الفصل الأول	15
	Exam Information	معلومات الامتحان	
Course name:	General Physics II	「 فيزياء عامة	اسم المقر:
Course code:	104 PHYS	¢ ¢ 1 ¢ فيز	رمز المقر:
Exam date:	Thursday 16/11/2023 G	الخميس r + /0.0 \% \% ¢ \% هـ	تاريخ الامتحان:
Exam time:	07:00 PM	مساء •V:. .	وقت الامتحان:
Exam duration:	1.5 Hours	ساعة ونصف	مدة الامتحان:

Student Information		معلومات الطالب	
Student's name:			اسم الطالب:
Student ID no.:			الرقم الجامعي:
Section no.:			رقم الشعبة:
Roll no.:			رقم التحضير:
Exam room no.:			رقم قاعة الامتحان:
Lecturer's name:			اسم أستاذ المقر:

The exam consists of 15 OUESTIONS and 5 PAGES (including the cover page and the graph sheet)
All answers are given in MKS (unless the unit is stated)

Physical Constants

$k_{e}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}$	$\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \cdot \mathrm{~N}^{-1} \cdot \mathrm{~m}^{-2}$	$\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} \cdot \mathrm{~A}^{-1}$	$\|e\|=1.6 \times 10^{-19} \mathrm{C}$
$g=9.8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$	$N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$	$m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$	$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$

Choose the letter of the correct answer and write it in CAPITAL LETTER in the appropriate box

1	2	3		4		5		6		7		8	9	10
C	A	C		B		D		B		A		A	C	A
			11		12		13		14		15			
			D		C		B		D		B			

1. An electron beam has a flow rate of 5×10^{16} electrons/s. The current of the beam in (mA) unit is:
A. 2.0
B. 3.1
C. 8.0
D. 9.3
2. A 1-meter-long Aluminum wire has resistance R. If the wire's diameter is doubled then its resistance becomes:
A. $\frac{R}{4}$
B. $\frac{R}{2}$
C. $2 R$
D. $4 R$
3. A coil of platinum wire has a resistance of 12Ω at $22{ }^{\circ} \mathrm{C}$. If the coil's resistance triples after it was placed in a furnace, then the temperature of the furnace in $\left({ }^{\circ} \mathrm{C}\right)$ unit is: [Assuming the platinum temperature coefficient of resistivity is $3.6 \times 10^{-3}\left({ }^{\circ} \mathrm{C}\right)^{-1}$]
A. 532
B. 556
C. 578
D. 592
4. An electric heater draws a steady current of 8 A on a $120-\mathrm{V}$ line. If the heater operates 4 h per day and the electric company charges $0.18 \mathrm{SAR} / \mathrm{kWh}$, the cost of operating this heater in one month in (SAR) is:
A. 15.5
B. 20.7
C. 70.2
D. 96.3
5. The equivalent resistance between points a and b in (Ω) unit is:

A. 4
B. 5
C. 6
D. 7
6. If the ammeter shown in the figure reads 3 A , then the unknown emf, ε, in (V) unit is: [Assuming that the circuit is in a steady state condition]

A. 42
B. 51
C. 63
D. 85
7. In the previous question (Q.06), the voltage across the capacitor in (V) unit is:
A. 30
B. 40
C. 50
D. 60
8. The figures below show four different configurations of the magnetic force, \mathbf{F}_{B}, acting on a charged particle moving with velocity, \mathbf{v}, in a uniform magnetic field, \mathbf{B}. The configuration that has the correct directions is:
A.

B.

C.

D.

9. A conductor suspended by two flexible wires, as shown in the figure, has a mass per unit length of $0.05 \mathrm{~kg} / \mathrm{m}$. If the conductor carries a current $I=2 \mathrm{~A}$, then the magnetic field needed in order for the tension in the supporting wires to be zero in (mT) unit is:

A. 123 into the page
B. 123 out of the page
C. 245 into the page
D. 245 out of the page
10. A uniform magnetic field of $8 \times 10^{-4} \mathrm{~T}$ is maintained in a chamber. An electron enters the chamber with a speed of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$ normal to the field. The radius of the path of the electron in (cm) unit is:
A. 2.84
B. 4.68
C. 6.24
D. 8.42
11. Consider two wires carrying the same current (I) are arranged cross each other at a right angle without actually making electrical contact. The point which has the total magnetic field pointing into the page is:

A. A
B. B
C. C
D. D
12. A horizontal overhead power line carries a current of 75 A in an east to west direction. The magnitude of the magnetic field due to the current 1.5 m below the line in $(\mu \mathrm{T})$ unit is:
A. 5
B. 7.5
C. 10
D. 12.5
13. If a solenoid carries a current of 5 A in order to obtain a magnetic field of 2 mT at the center of the solenoid, then the number of its turns per unit length should be:
A. 123
B. 318
C. 531
D. 642
14. A conducting wire of radius 18 mm carries a total current of 10 A uniformly distributed throughout its cross sectional area. The magnitude of the magnetic field at a distance of 5 mm from the center of the wire in $(\mu \mathrm{T})$ unit is:
A. 11.7
B. 19.2
C. 26.3
D. 30.9
15. The unit Weber (Wb) is equivalent to:
A. $\mathrm{N} \cdot \mathrm{m}^{2}$
B. $\mathrm{N} \cdot \mathrm{m} / \mathrm{A}$
C. $T \cdot m / A$
D. $\mathrm{N} \cdot \mathrm{A} / \mathrm{m}$
(End of Questions)
Best wishes..

