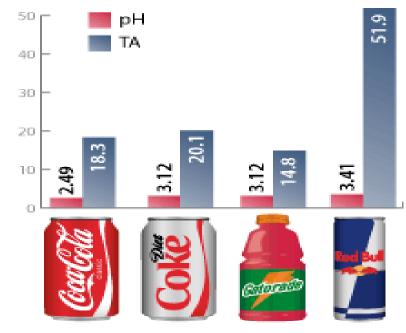


Phosphate in food:

- Phosphate occurs naturally in the form of **organic esters** in many kinds of food, including meat, potatoes, bread, and milk.
- Phosphate also used as <u>a food additive (inorganic phosphate)</u> as a preservative, a flavor or color enhancer, extend shelf life, and retain moisture.

Soft drinks:

- Soft drinks are complex mixtures containing a variety of substances such as colouring compounds, flavoring agents, acidifiers, sweeteners, preservatives, and caffeine.


- The most common acidifier used in soft drinks is phosphoric which gives a tangy taste in the mouth.

- Phosphoric acid can also acts as a preservative, keeping the contents of the bottle fresh.

Cola vs Vinegar:

- Due to the use of phosphoric acid, cola is a actually more acid than vinegar which no body can drink straight. But a ton of sugar, dyes and flavoring are added to mask the

acidity.

Practical Part

Objective:

- Estimation of inorganic phosphate in soft drinks using ascorbic acid as reducing agent.

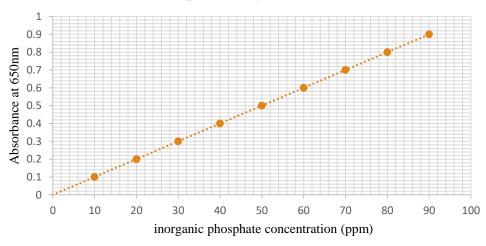
Principle:

- Phosphoric acid is colorless, they <u>cannot be directly</u> determined using visible-light spectrophotometry, Instead we will quantitatively convert them into a colored substance, whose absorbance can be easily measured
- Inorganic phosphate reacts with ammonium molybdate in an acid solution (ammonium molybdate prepared in sulphoric acid in this experiment) to form phosphomolybdic acid.
- Phosphomolybdic acid is then <u>reduced by a reducing agent (3% ascorbic acid)</u> to give **molybdenum blue a green/ blue color** that absorb at 650nm.

Method:

	Standard	Soft drink sample	Water	Ammonium molybdate	Ascorbic acid
Blank			2		
3 ppm	2				
4.5 ppm	2				
6 ppm	2			0.5 ml	0.5 ml
12 ppm	2				
15 ppm	2				
SD (try different concentration)					

Mix throughly after each addition Allow to stand for 10 min


(a deep blue/green colour should develop) — Measure the absorbance at 650 nm.

Results:

- Plot a graph between absorbance and concentration of phosphate in various standard solutions and obtain the calibrated curve.
- From the curve determine the amount of phosphate in the test solution.

Tube	Absorbance at 650nm		
Blank			
3 ppm			
4.5 ppm			
6 ppm			
12 ppm			
15 ppm			
Sample			

Estimation of inorganic phosphate in soft drink sample using ascorbic acid

Calculations:

- Inorganic phosphate concentration= dilution factor x concentration from the curve = ----- ppm

- Dilution factor= final volume / aliquot volume
- **→**SD1=
- **→**SD2=