

Nanostructured materials

Dr/ Samah El-Bashir

Associate Prof. of Experimental Condensed Matter Physics

Renewable Energy Research Group

Department of Physics and Astronomy

Science College

King Saud University

- 0D: quantum dots
- 1D: Nanowires
- 2D: superlattices and heterostructures
- Nano-Photonics
- Magnetic nanostructures
- Nanofluidic devices and surfaces

• Nanostructured materials derive their special properties from having one or more dimensions made small compared to a length scale critical to the physics of the process.

Phenomenon	Electronic Transport	Optical Interactions	Magnetic Interactions	Thermal	Fluidic Interactions
Physics	Fermi wavelength, λ _F Scattering length, ℓ	Wavelength of light in medium, $\lambda/2n$	Range of exchange interactions, range of magnetic dipole interactions	Phonon mean free path	Boundary layers, molecular dimensions
Length scale	$\lambda_F \approx 1 \text{\AA}$ $\ell \approx 10-100$ nm	100 – 300 nm	Exchange 1- 100 Å, Dipolar ca. microns	Hundreds of nm at 300K to very large at low T	Always in the low Reynolds number limit: Radius of gyration for dissolved molecules.

Development of electronic properties as a function of cluster size

• Each band has a width that reflects the interaction between atoms, with a bandgap between the conduction and the valence bands that reflects the original separation of the bonding ad antibonding states.

Electronic Density of States (DOS) and Dimensionality

Energy

• Size effects are most evident at band edges (semiconductor NPs).

• DOS (dn/dE) as a function of dimensionality.

Size Dependence of DOS

- k-space is filled with an uniform grid of points each separated in units of 2 /L along any axis.
- The volume of k-space occupied by each point is:

$$\left(\frac{2f}{L}\right)^3$$

3D DOS

Density of states in a volume V per unit wave vector: $\frac{dn}{dk} = \frac{Vk^2}{2f^2}$ For a free electron gas: $E = \frac{\hbar^2 k^2}{2m} \quad \frac{dE}{dk} = \frac{\hbar^2 k}{m}$ $\frac{dn}{dE} = \frac{dn}{dk} \frac{dk}{dE} = \frac{Vk^2}{2f^2} \frac{m}{\hbar^2 k} = \frac{Vm}{\hbar^2 2f^2} \sqrt{\frac{2mE}{\hbar^2}} \propto E^{\frac{1}{2}}$

3D case is for free particles.

2D DOS

 $\frac{dn}{dk} = \frac{A2fk}{\left(2f\right)^2}$ $\frac{dE}{dE} = \frac{\hbar^2 k}{k}$ dkm $\frac{dn}{dE} = \frac{dn}{dk}\frac{dk}{dE} = \frac{Am}{2f\hbar^2}$

Constant for each electronic band

1D DOS

$$\frac{dn}{dk} = \frac{L}{2f}$$
$$\frac{dE}{dk} = \frac{\hbar^2 k}{m}$$
$$\frac{dn}{dE} = \frac{Lm}{2f\hbar^2 k} \propto E^{-\frac{1}{2}}$$

Energy

• <u>At each atomic level, the</u> <u>DOS in the 1D solid</u> <u>decreases as the reciprocal</u> <u>of the square root of energy.</u>

0 D D O S

• In zero dimensions the energy states are sharp levels corresponding to the eigenstates of the system.

OD Electronic Structures: Quantum Dots

• Electronic energy gap

1-D Electronic Structures: Carbon Nanotubes

Wrapping vector: $\vec{n} = n_1 \vec{a}_1 + n_2 \vec{a}_2$

Diameter:
$$d = \sqrt{n_1^2 + n_2^2 + n_1 n_2} \ 0.0783 \text{nm}$$

• <u>The folding of the sheet controls the electronic</u> <u>properties of the nanotubes.</u>

Conduction in CNTs

- p_z electrons hybridize to form * valence and conduction bands that are separated by an energy gap of about 1V (semiconductor).
- For certain high simmetry directions (the K points in the reciprocal lattice) the material behaves like a metal.

• Apex: at this point CB meets VB for graphene sheets (metal-like behavior)

Allowed k_{\perp} states

• The component of the wave vector perpendicular to the CNT long axis is quantized

$$k_{\perp} = \frac{2n}{D}$$

D = diameter of the nanotube

- Metallic behavior: the allowed values of k_{\perp} intersect the k points at which the conduction and valence bands meet.
 - <u>CNTs can be either metals or semiconductors</u> <u>depending on their chirality.</u>

• Field effect transistor (FET) made from a single semiconducting CNT connecting source and drain connectors.

Semiconductor Nanowires

• Ga-P/Ga-As p/n nanojunctions

2D Electronic Structures: superlattices and heterostructures

Superlattice:

- Alternating layers of small bandgap semiconductors (GaAs) interdispersed with layers of wide bandgap semiconductors (GaAlAs).
- The thickness of each layer is considerably smaller than the electron mean free path.

Band splitting into sub-bands

- Modulation of the structure on the length scale d (thickness of the layer in the superlattice) gives rise to the formation of new bands inside the original Brillouin zone.
- Electrons can pass freely from one small bandgap region to another without scattering.

Quantum Hall resistance of 2D electron gas

• Electrons in a layer are accelerated by an applied magnetic field (B) at a frequency:

Magnetic quantization in 2D electron gas.

Confinement on optical length scales Plasmonics

- Small metal particles exhibit a phenomenon called *plasma resonance*, i.e. plasma-polariton resonance of the free electrons in the metal surface.
- A resonant metal particle can capture light over a region of many wavelengths in dimension even if the particle itself is only a fraction of a wavelength in diameter.
- Free electrons in metals polarize excluding electric fields from the interior of the metal showing a negative dielectric constant.
- The polarizability of a sphere of volume V and dielectric constant _r is: $\Gamma = V_0 3V \frac{V_r - 1}{V_r + 2}$

When $r -2 \alpha$

• For d<< the resonant frequency is independent on the particle size, but depends on particle shape.

For a prolate spheroid of eccentricity e:

$$e^{2} = 1 - \left(\frac{b}{a}\right)^{2}$$

$$r = \frac{V_{0}V}{L} \frac{1 - V_{r}}{(1/L - 1) + V_{r}}$$

where:

$$L = \frac{1 - e^2}{e^2} \left(-1 + \frac{1}{2e} \ln \frac{1 + e}{1 - e} \right) \approx \left(1 + \frac{a}{b} \right)^{-1.6}$$

<u>The resonance is tunable throughout the visible by</u> <u>engineering the particle shape.</u>

Plasmon Enhanced Optical Absorption

Electric field surrounding a resonant nanoparticle $(E=E_z)$

Noble Metal Nanoparticles

SEI 15.0W X000.000 W

Magnetic properties

• Diamagnetism:

Zero-spin systems give rise to circulating currents that oppose the applied field.

• Paramagnetism:

Free-electrons are magnetically polarized by an external magnetic field (*positive magnetic susceptibility*, Pauli paramagnetism).

• Ferromagnetism:

Spontaneous magnetic ordering due to electron-electron interactions.

Antiferromagnetism: polarization alternates from atom to atom.

Magnetic nano-particles could improve medical imaging

2D Nanostructures: Super hydrophobic Surfaces

• The angle formed by a tangent to a flat surface of a drop of water at the point of contact (*contact angle*) is given in terms of the interfacial energies of the system by the Young equation:

$$\cos\left[_{c} = \frac{X_{AB} - X_{AC}}{X_{BC}}\right]$$

_{AB}= air/surface interfacial tension

_{AC}= water/surface interfacial tension

 $_{\rm BC}$ = air/water interfacial tension

 $cos[_{c} < 1$ Water/surface repulsion (large interfacial tension)

Si Nanowires

Coated Si surface Coated nanostructured (planar) surface (rough)

Roughening on the nanoscale can greatly increase hydrophobicity.