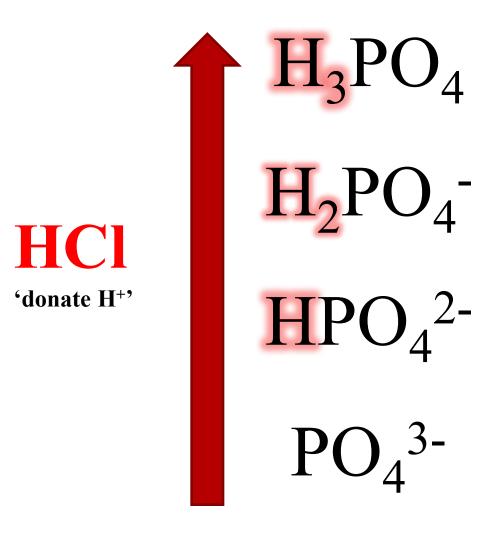
Preparation of Buffer Solutions by Different Laboratory Ways


Dissociation of triprotic acid:

- **Triprotic acid** is acid that contain three hydrogens ions.
- □ It dissociates in solution in three steps, with three Ka values.
- **phosphoric acid** is an example of triprotic acid.
- □ It dissociates in solution as following:

$$H_{3}PO_{4} \iff H^{+} + H_{2}PO_{4}^{-} \qquad pK_{1} = 2.12$$
 $H_{2}PO_{4}^{-} \iff H^{+} + HPO_{4}^{2-} \qquad pK_{2} = 7.21$
 $HPO_{4}^{2-} \iff H^{+} + PO_{4}^{3-} \qquad pK_{3} = 12.30$

Preparation of buffer by several ways:

- For example if you was asked to prepare sodium phosphate buffer [NaH₂PO₄ / Na₂HPO₄]: you can prepare it by......
- By mixing NaH₂PO₄ (conjugate acid) and Na₂HPO₄ (conjugate base) in the proper proportions.
- By starting with $\underline{H_3PO_4}$ and converting it to $\underline{Na_{12}PO_4}$ plus $\underline{Na_{2}HPO_4}$ by adding the proper amount of \underline{NaOH} .
- By starting with $Na_{\underline{H}_2}PO_4$ and converting a portion of it to $Na_2\underline{H}PO_4$ by adding **NaOH**.
- By starting with Na_2HPO_4 and converting a portion of it to Na_2PO_4 by adding a strong acid such as HCL.
- By starting with Na₃PO₄ and converting it to Na₂HPO₄ plus NaH₂PO₄ by adding HCL.
- By mixing Na_3PO_4 and NaH_2PO_4 in the proper proportions.

NaOH

'accept H+'

Prepare 0.1 liters of 0.045 M sodium phosphate buffer, pH=7.5, [pKa1=2.12, pKa2=7.21 and pKa3=12.30]:

- a) From concentrated (15M) H₃PO₄ and solution of 1.5 M NaOH.
- b) From solid NaH₂PO₄ and solid NaOH.

Calculations:

1st \rightarrow Write the equations of phosphoric acid dissociation and the pKa of corresponding ones: Because phosphoric acid [H₃PO₄] is **triprotic acid** it has 3 dissociation phases so: Regardless of which method is used, the first step involves determine the buffer ionic species, calculating number of moles and amounts of the two ionic species in the buffer.

$$H_{3}PO_{4} \longrightarrow H^{+} + H_{2}PO_{4}^{-}$$
 $pK_{1} = 2.12$
 $H_{2}PO_{4}^{-} \longrightarrow H^{+} + HPO_{4}^{2-}$ $pK_{2} = 7.21$
 $HPO_{4}^{2-} \longrightarrow H^{+} + PO_{4}^{3-}$ $pK_{3} = 12.30$

2nd → Choose the pKa value which is near the pH value of the required buffer, to be able to know the ionic species involved in your buffer:

$$H_{3}PO_{4} \longrightarrow H^{+} + H_{2}PO_{4}^{-} \qquad _{PK_{1}} = 2.12$$
 $H_{2}PO_{4}^{-} \longrightarrow H^{+} + HPO_{4}^{2-} \qquad _{PK_{2}} = 7.21$
 $HPO_{4}^{2-} \longrightarrow H^{+} + PO_{4}^{3-} \qquad _{PK_{3}} = 12.30$

The pH of the required buffer [pH=7.5] is near the value of pKa2, consequently, the two major ionic species present are H_2PO_4 (conjugate acid) and HPO_4 (conjugate base), with the HPO_4 predominating {since the pH of the buffer is slightly basic}.

Calculations cont':

3rd → calculate No. of moles for the two ionic species in the buffer:

$$pH = pKa2 + log [HPO_4^{2-}] / [H_2PO_4^{-}]$$
 \rightarrow Note that : $[A^-] = HPO_4^{2-}$, $[HA] = H_2PO_4^{-}$

• Since the buffer concentration is 0.045M, so assume $[A^-] = y$, [HA] = 0.045 - y:

$$7.5 = 7.2 + \log (y / 0.045 - y)$$

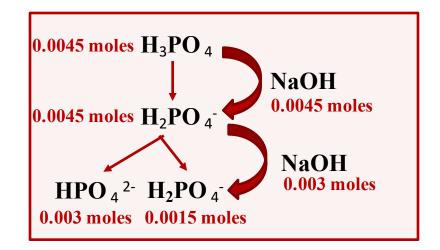
$$7.5-7.2 = \log (y / 0.045-y)$$

$$0.3 = \log(y / 0.045 - y)$$
 antilog for both sides
 $\Rightarrow 2 = (y / 0.045 - y)$ $\Rightarrow y = 0.09 - 2y$ $\Rightarrow 3y = 0.09$ $\Rightarrow y = 0.9/3 = 0.03M$ \Rightarrow conc. of $[HPO_4^2] = [A] = y$
So, conc. of $[H_2PO_4] = [HA] = 0.045 - y = 0.045 - 0.03 = 0.015 M$

- Now find the number of mole for the two ionic species in the buffer:
- No. of moles of = $HPO_4^{2-}(A^-) = M \times V = 0.03 \times 0.1 = 0.003 \text{ moles}.$
- No. of moles of $H_2PO_4^-$ (HA)= M x V = 0.015 x 0.1 = 0.0015 moles.
- Note that Total no. of moles of phosphate buffer $= M \times V = 0.045 \times 0.1 = 0.0045 \text{ moles}.$

Now, to prepare the required buffer:

a) From concentrated (15M) H₃PO₄ and solution of 1.5 M NaOH.


Remember that the two ionic species involved in the buffer are: H₂PO₄ + HPO₄²

Calculations:

Start with 0.0045 mole of $\underline{H_3PO}_4$ add 0.0045 moles of NaOH to convert $\underline{H_3PO}_4$ completely to $\underline{H_2PO_4}^-$ (HA), then add 0.003 moles of NaOH to convert $\underline{H_2PO_4}^-$ to give $\underline{HPO_4}^{2-}$ (A-):

No. of moles needed of NaOH= $0.0045+0.003=\frac{0.0075 \text{ moles}}{0.0075 \text{ moles}}$

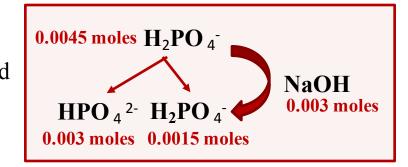
- → Volume of H_3PO_4 needed =no.of moles / M = 0.0045/15 = 0.0003 L = 0.003 L = 0.003 L = 0.0003 L = 0.0003

So:

Add 5ml of NaOH to the 0.3 ml of concentrate H₃PO₄, mix; then add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH.

b) From solid NaH₂PO₄ and solid NaOH.

Remember that the two ionic species involved in the buffer are:


H₂PO₄ + HPO₄²

Calculations:

Start with 0.0045 mole of NaH₂PO₄ (HA) and add 0.003 moles of NaOH to convert NaH₂PO₄ to give Na₂HPO₄ (A⁻):

- → Weight in grams of NaH₂PO₄ needed = no.of moles x MW = 0.0045 x $119.98 = \frac{0.54}{9}$ g
- → Weight in grams of NaOH needed = no. of moles x MW = $0.003 \times 40 = 0.12 \text{ g}$

So: Dissolve the 0.548g of NaH₂PO₄ and 0.12g of NaOH in some water, mix; then add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH.

Practical Part

Objective:

□ To learn how to prepare a buffer by different laboratory ways.

Method:

- □ Prepare 0.1 liters of 0.045 M sodium phosphate buffer, pH=7.5,
- [pKa1= 2.12, pKa2 = 7.21 and pKa3 = 12.30]:
- a) From concentrated (15M) H₃PO₄ and solution of 1.5 M NaOH:

Add 5ml of NaOH to the 0.3 ml of concentrate H_3PO_4 , mix; then add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH.

b) From solid NaH₂PO₄ and solid NaOH:

Dissolve the **0.584g** of NaH₂PO₄ and **0.12g** of NaOH in some water, mix; then add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH.

Homework:

- □ Prepare 0.1 liters of 0.045 M sodium phosphate buffer, pH=7.5, [pka1= 2.12, pka2 = 7.21 and pka3 = 12.30]:
- c) You are provided with solid Na₂HPO₄ and 2M HCl.
- d) You are provided with solid Na₃PO₄ and 2 M HCL.

Now, to prepare the required buffer:

c) You are provided with solid Na₂HPO4 and 2M HCl?

Calculations:

Start with 0.0045 mole of $\underline{\text{Na}_2\text{HPO}_4}$ add 0.0015 moles of HCl to titrate $\underline{\text{Na}_2\text{HPO}_4}$ to give $\underline{\text{NaH}_2\text{PO}_4}$ (HA):

No. of moles needed of HCl= 0.0015 moles

- → Volume of HCl needed= no.of moles / M = 0.0015/2 = 0.00075 L = 0.75 ml
- → Weight of Na_3PO_4 needed = no.of moles x MW =0.0045 x 380.12 = 1.71 g

So: Dissolve 1.71 g of Na₃PO₄ in some water, mix; then add 0.75 ml of HCl. Finally, add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH.

d) You are provided with solid Na₃PO₄ and 2 M solution of HCL.

Calculations:

Start with 0.0045 mole of $\underline{\text{Na}_3\text{PO}_4}$ and add 0.0045 moles of HCl to convert $\underline{\text{Na}_3\text{PO}_4}$ completely to give $\underline{\text{Na}_2\text{HPO}_4}$ (A-), then add 0.0015 moles of HCl to convert $\underline{\text{Na}_2\text{HPO}_4}$ to give $\underline{\text{NaH}_2\text{PO}_4}$ (HA):

No. of moles needed of HCl= 0.0045+0.0015=0.006 moles

- \rightarrow Volume of HCl needed= no.of moles / M = 0.006/ 2= 0.003 L = 3 ml
- \rightarrow Weight of Na3PO4 needed = no.of moles x mwt =0.0045 x 380.12 = 1.71 g

So: Dissolve 1.71 g of Na3PO in some water, mix; then add 3 ml of HCl. Finally, add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH.