Bacterial Mechanisms of Pathogenicity

4th Lecture

4. Toxins

- Poisonous substances produced by microorganisms
- toxins primary factor pathogenicity
- 220 known bacterial toxins
 - 40% cause disease by damaging the Eukaryotic cell membrane

Toxemia

- Toxins in the bloodstream
- Toxigenicity: Capacity of microorganisms to produce toxins.

Two Types of Toxins

- 1. Exotoxins
 - secreted outside the bacterial cell

- 2. Endotoxins
 - part of the outer cell wall of Gram (-) bacteria. ??

Exotoxins versus Endotoxins

(a) Exotoxins are produced inside mostly gram-positive bacteria as part of their growth and metabolism. They are then released into the surrounding medium.

(b) Endotoxins are part of the outer portion of the cell wall (lipid A; see Figure 4.12c) of gram-negative bacteria. They are liberated when the bacteria die and the cell wall breaks apart.

© BENJAMIN/CUMMINGS

ENDOTOXINS

1 Integral part of cell wall

2.Endotoxin is LPS;

- lipid A is toxic
- 3.Heat stable
- 4.Antigenic; questionable immunogenicity

6.Many effects on host

7.Produced only by gramnegative organisms

EXOTOXINS

- 1 Released from the cell before or after lysis
- 2.Protein

3.Heat labile

4.Antigenic and immunogenic

5. Toxoids not be produced 5. Toxoids can be produced

- 6.Specific in effect on host
- 7.Produced by gram-positive
 - & gram-negative organisms

I- Exotoxins

Mostly seen in Gram (+) Bacteria

Most gene that code for exotoxins are located on plasmids or phages

Three Types of Exotoxins

1. Cytotoxins

- kill cells e.g. Diphtheria toxin
- 2. Neurotoxins
 - interfere with normal nerve impulses.e.g. Botulinum Toxin

3. Enterotoxins

• effect cells lining the G.I. Tract. e.g. Cholera toxin or choleragen.

Response to Toxins

- If exposed to exotoxins: antibodies against the toxin (antitoxins)
- Exotoxins inactivated (heat, formalin or phenol) no longer cause disease, but stimulate the production of antitoxin
 - altered exotoxins Toxoids
- Toxoids modified toxin by heat, chemical, radiation, that have lost their toxicity. Injected to stimulate the production of antitoxins and provide immunity.

Example: DPT Vaccine

- D Diphtheria
 - Corynebacterium diphtheriae
- P Pertussis
 - Bordetello pertussis
- T Tetanus
 - Clostridium tetani
- DPT Diphtheria Toxoid Pertussis Antigen Tetanus Toxoid

Required Immunizations

- 1. Diphtheria
- 2. Pertussis
- 3. Tetanus
- 4. Measles
- 5. Mumps
- 6. Rubella
 - German Measles
- 7. Polio
- 9. Hepatitis B

- Corynebacterium diphtheriae
- Bordetello pertussis
- Clostridium tetani
- Measles virus
- Mumps virus
- Rubella virus
- Polio virus
- Hepatitis B Virus

Most genes that code for exotoxins - plasmids or phages

- Lysogenic convergence
- Diphtheria
- Cytotoxin inhibits protein synthesis resulting in cell death
- Pseudomembrane
 - fibrin, dead tissue, bacterial cells

Lysogenic Convergence

- Scarlet Fever
- Streptococcus pyogenes
 - lysogenic convergence
- **Cytotoxin** damages blood capillaries and results in a skin rash
 - Strep Thoat with a rash

© Science VU/Visuals Unlimited. Used with permission.

Diseases Caused by Staphylococcal Toxins

Scalded Skin Syndrome Toxic Shock Syndrome

Diseases caused by Neurotoxins

Botulism

- Clostridium botulinum
 - Gram (+), anaerobic, spore-forming rod, found in soil
- works at the neuromuscular junction
- prevents impulse from nerve cell to muscle cell
- results in muscle paralysis

Tetanus (Lock Jaw) Clostridium tetani

- Gram (+), spore-forming, anaerobic rod
- neurotoxin acts on nerves, resulting in the inhibition of muscle relaxation
- tetanospasmin "spasms" or "Lock Jaw"

Muscle Spasms of Tetanus are Caused by Neurotoxin of *Clostridium tetani*

Neonatal Tetanus (Wrinkled brow and risus sardonicus) Source: Color Guide to Infectious Diseases, 1992

Diseases caused by Enterotoxins

Cholera

- Vibrio cholerae
- Gram (-) comma shaped rods

Cholera toxin

Converts ATP into cAMP • causes cells to excrete Cl⁻ ions and inhibits absorption of Na⁺ ions Electrolyte imbalance H_2O leaves by osmosis ▶ H₂O Loss (Diarrhea) **Two polypeptides:** A (active) and B (binding). The A subunit of enterotoxin causes epithelial cells to discharge large amounts of fluids and electrolytes.

Severe cases, 12 - 20 liters of liquid lost in a day

Untreated cases - Mortality Rate about 50%

Mortality may be reduced to about 1%

• administering fluids and electrolytes

Vibrio Enterotoxin Causes Profuse Watery Diarrhea

Rice-water stool of cholera. The A subunit of enterotoxin causes epithelial cells to discharge large amounts of fluids and electrolytes. Source: Tropical Medicine and Parasitology, 1995

EHEC (Enterohemorrhagic E. coli)

- E. coli (0157:H7)
 - enterotoxin causes a hemolytic inflammation of the intestines
- results in bloody diarrhea
 - Toxin
 - alters the 60S ribosomal subunit
 - inhibits Protein Synthesis
 - Results in cell death
 - lining of intestine is "shed"
 - Bloody Diarrhea (Dysentary)

Toxin	Bacteria	Effect
Endotoxin	Gram-negative lipopolysaccharide	Fever and inflammatory cell stimulation
Exotoxins		
Neurotoxins	Clostridium tetani Clostridium botulinum	Disordered neuromuscular transmission (tetanus and botulism)
Enterotoxins (infectious diarrhoea)	Vibrio cholera, E. coli Bacillus cereus	Diarrhoea
Enterotoxins (food poisoning)	Staphylococcus aureus Bacillus cereus	Diarrhoea and vomiting
Tissue-invasive toxins	Staphylococcus aureus Streptococcus pyogenes Clostridium perfringens	Tissue destruction by enzymes
Pyrogenic toxins	Staphylococcus aureus Streptococcus pyogenes	Toxic shock syndrome Scarlet fever
Verotoxins	E. coli (0157:H7)	Haemolytic uraemic syndrome
Miscellaneous	Bordetella pertussis Corynebacterium diphtheria Clostridium difficile	Whooping cough Diphtheria (heart and nerve damage) Pseudomembranous colitis

More on Toxins

II- Endotoxins

- Part of outer membrane surrounding gram-negative bacteria.
- Endotoxin is lipid portion of lipopolysaccharides (LPS), called lipid A.
- Effect exerted when gram-negative cells die and cell walls undergo lysis, liberating endotoxin.
- All produce the same signs and symptoms:
 - Chills, fever, weakness, general aches, blood clotting and tissue death, shock, and even death. Can also induce miscarriage.
 - Fever: Pyrogenic response is caused by endotoxins.

Exotoxins vs. Endotoxins

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 19.3 Comparison of Exotoxins and Endotoxin

Property	Exotoxins	Endotoxin
Bacterial source	Gram-positive and Gram-negative species	Gram-negative species only
Location in the bacterium	Synthesized in the cytoplasm; may or may not be secreted	Component of the outer membrane
Chemical nature	Protein	Lipopolysaccharide (the lipid A component)
Ability to form a toxoid	Generally	No
Heat stability	Generally inactivated by heat	Heat-stable
Mechanism	A distinct toxic mechanism for each	Innate immune response; a systemic response leads to fever, a dramatic drop in blood pressure, and disseminated intravascular coagulation.
Toxicity	Generally very potent; some are among the most potent toxins known.	Not very toxic; small amounts lead to an appropriate response that helps clear an infection.

Endotoxins (Continued)

- Endotoxins do not promote the formation of effective antibodies.
- Organisms that produce endotoxins include:
 - Salmonella typhi
 - Proteus spp.
 - Pseudomonas spp.
 - Neisseria spp.
- Medical equipment that has been sterilized may still contain endotoxins.
 - *Limulus* amoebocyte assay (LAL) is a test used to detect tiny amounts of endotoxin.

Events leading to fever:

- Gram-negative bacteria are digested by phagocytes.
 - **LPS** is released by digestion in vacuoles, causing macrophages to release interleukin-1 (IL-1).
- IL-1 is carried via blood to hypothalamus, which controls body temperature.
- IL-1 induces hypothalamus to release **prostaglandins**, which reset the body's thermostat to higher temperature.

Microbial Mechanisms of Pathogenicity: How Microorganisms Cause Disease

Types of Symbiosis

- Mutualism
 - A symbiotic relationship in which both species benefit
- Commensalism
 - A symbiotic relationship in which one species benefits, and the other species is neither helped nor harmed

Types of Symbiosis (cont.)

- Parasitism
 - A symbiotic relationship in which one species benefits, and the other species is harmed
 - Generally, the species that benefits (the parasite) is much smaller than the species that is harmed (the host)

Normal flora is present in

- skin
- upper respiratory tract
- oral cavity
- intestine, especially large intestine
- vaginal tract

Very little normal flora in eyes & stomach

Notably absent in most all internal organs

- Absent in:
 - lower respiratory tract
 - muscle tissue
 - blood & tissue fluid
 - cerebrospinal fluid
 - peritoneum
 - pericardium
 - meninges

Benefits of the normal flora

- Nutrient production/processing eg Vitamin K production by *E. coli*
- Competition with pathogenic microbes
- Normal development of the immune system Normal flora and opportunistic infections

III. C. Generalized Stages of Infection

Entry of Pathogen

• Portal of Entry

Colonization

• Usually at the site of entry

Incubation Period

- Asymptomatic period
- Between the initial contact with the microbe and the appearance of the first symptoms

III. C. Generalized Stages of Infection

Prodromal Symptoms

• Initial Symptoms

Invasive period

- Increasing Severity of Symptoms
- Fever
- Inflammation and Swelling
- Tissue Damage
- Infection May Spread to Other Sites

III. C. Generalized Stages of Infection

6. Decline of Infection

5. Convalescence

Course of Infectious Disease

