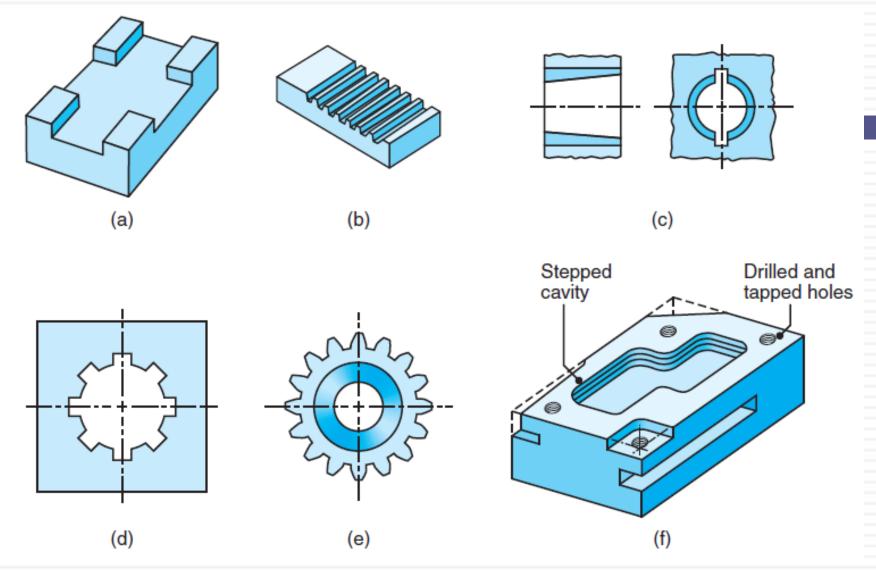
Manufacturing Processes (2), IE-352 Ahmed M El-Sherbeeny, PhD Spring 2018

Manufacturing Engineering Technology in SI Units, 6th Edition Chapter 24: Machining Processes: Milling (Milling, Broaching, Sawing, Filing and Gear Manufacturing)

Chapter Outline


1. Introduction

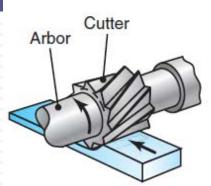
- 2. Milling and Milling Machines
- 3. Planing and Shaping
- 4. Broaching and Broaching Machines
- 5. Sawing
- 6. Gear Manufacturing by Machining

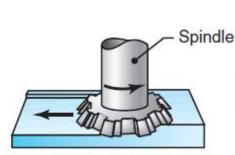
Introduction

- Last chapter: processes that produce round shapes
- □ Milling:
 - One of most common, versatile, economical machining processes
 - Rotating cutter removes material, traveling along various axes w.r.t. workpiece:
 - Milling cutter multitooth tool: produces num. of chips / 1 rev
 - Takes place in a variety of configurations
 - Produces parts w/ complex external and internal features
- Similar processes (<u>not discussed here</u>):
 - Planing, shaping, broaching, sawing, filing, gear manufacturing
 - Either tool or workpiece travel along straight path
 - Produce flat or various shaped surfaces

Typical parts and shapes that can be produced with machining processes described in this chapter. Can you guess how a) - f) are produced?

Milling and Milling Machines

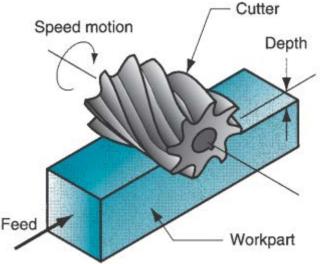

(d)

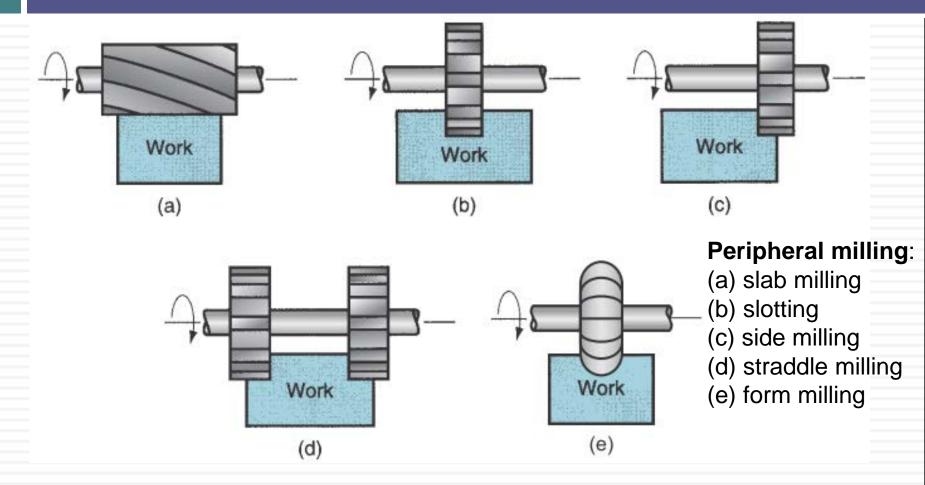

Shank

5

- Some basic types of milling cutters and milling operations.
- a) Peripheral (aka plain milling)
- b) Face milling
- c) End milling
- d) Ball-end mill (with indexable coated-carbide inserts)
- e) End mill using 5axis NC machine

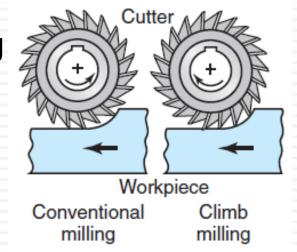
(a) Peripheral milling


(b) Face milling


Spindle

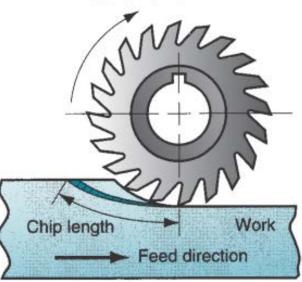
End mill

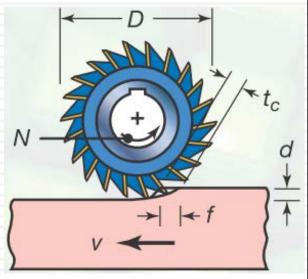
- Axis of cutter rotation: parallel to workpiece surface
- Cutter body:
 - Generally made of high-speed steel
 - Has # of teeth along its circumference
 - Each tooth acts like a single-cutting tool
- When cutter: longer than width of cut
 - $\square \Rightarrow \text{process is called } slab milling$
- Other types of peripheral milling are shown on the <u>next slide</u>



- Orthogonal vs. oblique cutting (milling)
 - Cutters have straight or helical teeth
 - $\square \Rightarrow result in orthogonal or oblique cutting$
 - Helical teeth preferred since:
 - teeth partially engaged with workpiece
 - ⇒ lower F_c and torque on cutter
 - ⇒ smoother operation, reduced chatter

Conventional Milling and Climb Milling

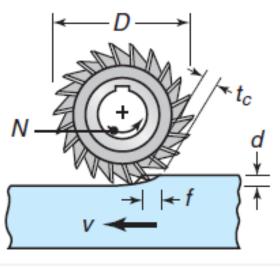

- Cutter rotation:
 - Conventional (aka up) milling,
 - Climb (aka down) milling
 - This is significant in operation

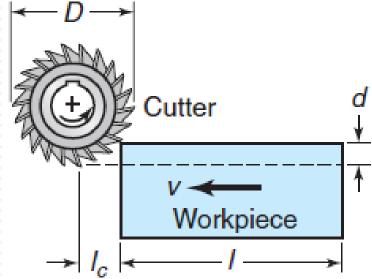


Milling and Milling Machines: Peripheral Milling Cutter rotation direction

Cont. Conventional / Climb Milling

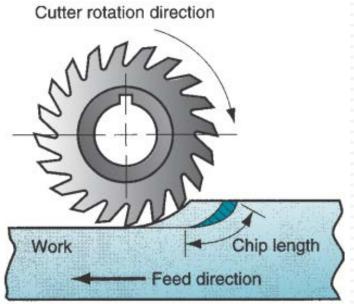
- Conventional (more common) milling
 - max. t_c is at end of cut
 - i.e. as tooth leaves workpiece (\rightarrow)
- Advantages:
 - Tooth engagement: not function of workpiece surface characteristics
 - Contamination/scale (oxide layer) on surface doesn't adversely affect T
- Disadvantages:
 - If cutter teeth not sharp ⇒ tooth rubs on surface before cutting
 - Also: tool may chatter; workpiece may be pulled upward


Slab milling operation showing:


- d: depth of cut
- f: feed per tooth
- w: width of cut (not shown)
- t_c: chip depth of cut
- *v*: workpiece speed (feed rate)
- D: cutter diameter
- N: cutter rotational speed
- n: number of teeth on cutter periphery

Schematic illustration of:

 l_c : cutter travel distance (horizontal) to reach full depth of cut


l: length of workpiece

Cont. Conventional / Climb Milling

- Climb milling:
 - Cutting starts at surface of workpiece where chip is thickest →
- Advantage:
 - Downward component of F_c holds workpiece in place (esp. thin parts)
- Disadvantages:
 - Requires rigid work-holding setup
 - Gear backlash must be eliminated
 - Not suitable for workpieces with scale (e.g. hot-worked metals)
 - Note, scale \Rightarrow more wear \Rightarrow lower T

Milling Parameters

Cutting speed in peripheral milling is surface speed of cutter:

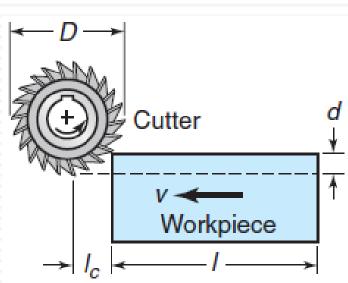
$$V = \pi D N$$

- \Box t_c in slab milling:
 - Varies along its length (due to relative longitudinal motion between cutter and workpiece)
 - As $t_c \uparrow \Rightarrow F_c \uparrow$
 - For straight-tooth cutter, approx. undeformed t_c (chip depth of cut):

$$t_c = 2f_{\sqrt{\frac{d}{D}}}$$

Milling Parameters

 \Box f: distance workpiece travels per tooth of cutter:


Note, dimensional accuracy can be checked:
 [mm/tooth] = [mm/min]/[rev/min][num.of teeth/rev]

 $=\frac{1}{N\eta}$

Cutting time is given by:

- Note, *l_c*: horizontal extent of cutter's first contact with workpiece
- **\square** *l_c* can be approximated using:

$$l_c = \sqrt{d(D-d)}$$

Milling Parameters

- $\square \quad \underline{\text{Assuming}} \ l_c \ll l \Rightarrow \text{MRR is given by:} \\ MRR = \frac{lwd}{t} = wdv$
 - Note, in slab milling: *w* is same as *w* of workpiece
 - Also, as with turning, non-cutting time should be minimized
- Power requirement and torque on spindle:
 - Calculated similar to technique used in drilling
 - Note, forces on cutter (tangential, radial, axial*):
 - Difficult to calculate (since many variables are involved)
 - Many variables related to cutting-tool geometry
 - **D** Torque = tangential force (F_c) * cutter radius (D/2)
 - Note, F_c per tooth depends on # of teeth engaged during cutting

Summary of Peripheral Milling Parameters and Formulas

- N = Rotational speed of the cutter, rpm
- F = Feed, mm/rev
- D = Cutter diameter, mm
- n = Number of teeth on cutter
- v = Linear speed of the workpiece or feed rate, mm/min
- V = Surface speed of cutter m/min
 - $= \pi DN$

15

- f = Feed per tooth, mm/tooth
 - = v/Nn
- l = Length of cut, mm
- t =Cutting time, s or min
- = $(l + l_c)/\nu$, where l_c = extent of the cutter's first contact with the workpiece
- $MRR = mm^{3}/min$
 - = w dv, where w is the width of cut
- Torque = $N \cdot m$
 - $= F_c D/2$
- Power = kW
 - = (Torque)(ω), where $\omega = 2\pi N$ radians/min

EXAMPLE 24.1

Material-removal Rate, Power, Torque, and Cutting Time in Slab Milling

A slab-milling operation is being carried out on a 300-mmlong, 100-mm-wide annealed mild-steel block at a feed f0.25 mm/tooth and a depth of cut d 3.0 mm. The cutter is D=50 mm in diameter, has 20 straight teeth, rotates at 100rpm and, by definition, is wider than the block to be machined. Calculate the material-removal rate, estimate the power and torque required for this operation, and calculate the cutting time.

Solution

17

Material-removal Rate, Power, Torque, and Cutting Time in Slab Milling

The linear speed of the workpiece is

v = fNn = (0.25)(100)(20) = 500 mm/min

The material-removal rate is

 $MMR = (100)(3)(500) = 150,000 \text{ mm}^3 / \text{min}$

The power required is

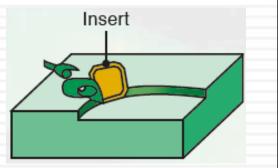
 $Power = (3)(150,000)(\frac{1}{60}) = 7.5 \text{ kW}$

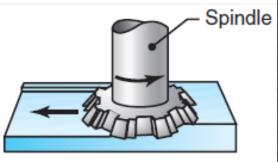
Solution

18

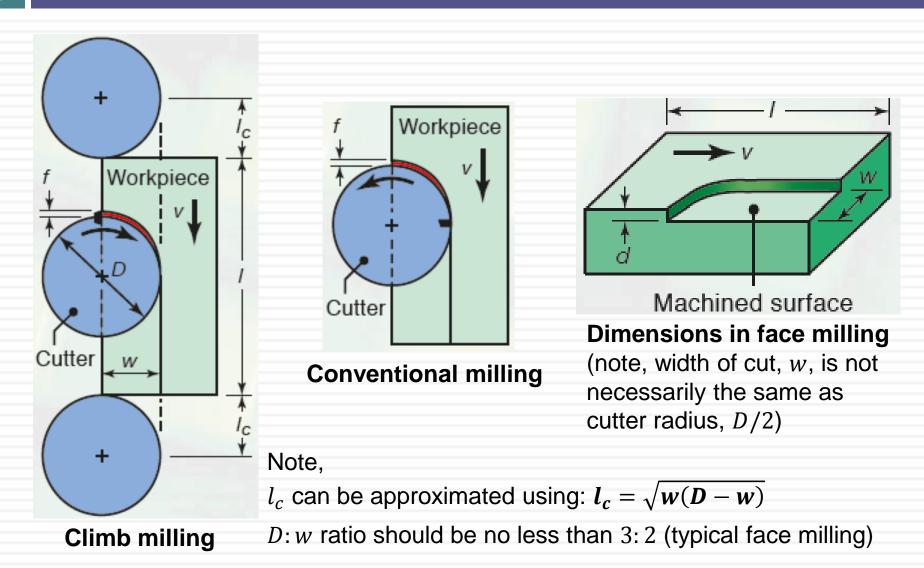
Material-removal Rate, Power, Torque, and Cutting Time in Slab Milling

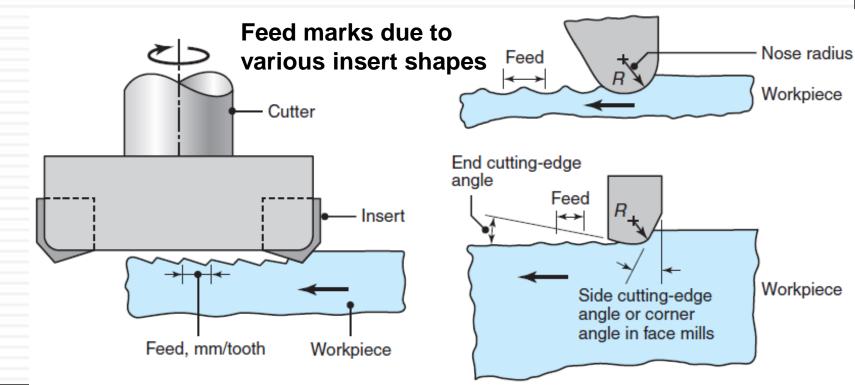
The torque acting on the cutter spindle is

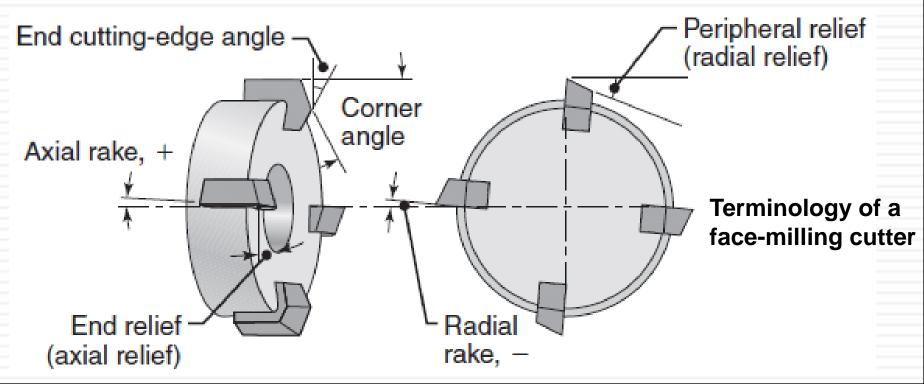

Torque = $\frac{\text{Power}}{\text{Rotational Speed}} = \frac{(7500)(60)}{(100)(2\pi)} = 716 \text{ Nm}$

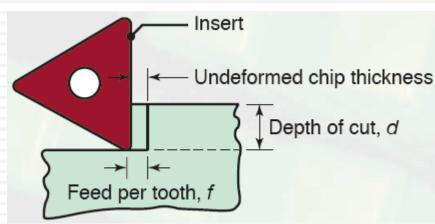

The cutting time is

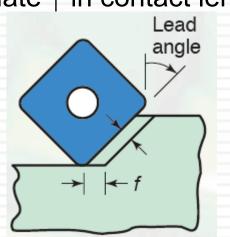
$$t = \frac{300 + \sqrt{Dd}}{500} = \frac{300 + \sqrt{(50)(3)}}{500} = 0.62 \text{ min} = 37.2 \text{ s}$$


- □ Face milling cutter:
 - Mounted on a spindle
 - Axis of rotation: ⊥ to workpiece surface
 - **Removes material in manner shown** (\rightarrow)
 - Cutting teeth:
 - Example: carbide inserts
 - Mounted on the cutter body
 - Cutter: rotates at rotational speed, N
 - Workpiece: moves along straight path at linear speed, v
 - Rotates as: climb or conventional milling (<u>next slide</u>)

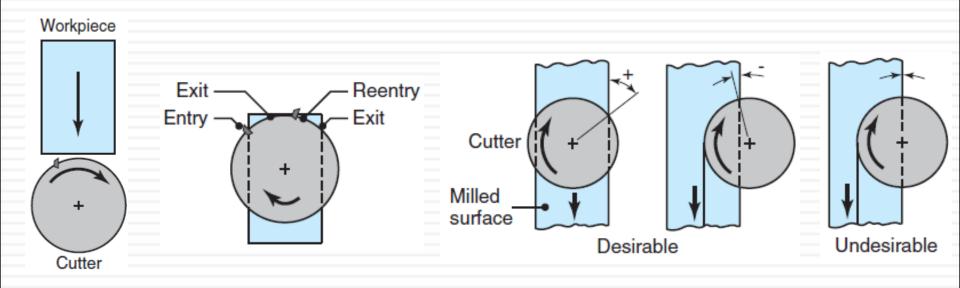



⁽b) Face milling


- Relative motion between cutter teeth and workpiece \Rightarrow feed marks on machined surface (↓)
 - Note, these marks are similar to those left by turning
 - **\square** Roughness of workpiece depends on: corner geometry and f



- Face-milling cutter: terminology and various angles:
 - 2 cutting angles (side/corner and end)
 - 2 rake angles (axial and radial)
 - 2 relief angles (axial and radial)

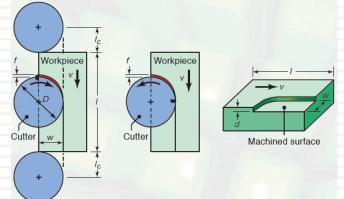


- Lead angle: of insert in face milling
 - **\square** Has direct influence on the **undeformed chip thickness**, t_c
 - As lead angle ↑
 - $\Rightarrow t_c \downarrow (\Rightarrow chip thickness \downarrow)$
 - but length of contact (\Rightarrow width of chip): \uparrow
 - but cross-sectional area of t_c remains constant
 - Lead angles usually: 0° 45°

- Relation between cutter and workpiece (\downarrow) :
 - This determines angle at which insert enters & exits workpiece

Tip of insert makes first contact (\Rightarrow possible for cutting edge to chip off)

24


First contact is at an angle, away from insert tip (⇒ lower tendency of insert to fail)

Insert exits workpiece at an angle (⇒ force on insert reduces to zero at a slow rate) Insert exits workpiece suddenly (undesirable for tool life)

EXAMPLE 24.2

Material-removal Rate, Power Required, and Cutting Time in Face Milling

Assume that D = 150 mm, w = 60 mm, l = 500 mm, d = 3 mm, v = 0.6 m/min and N = 100 rpm. The cutter has 10 inserts, and the workpiece material is a high-strength aluminum alloy. Calculate the material-removal rate, cutting time, and feed per tooth, and estimate the power required.

Solution

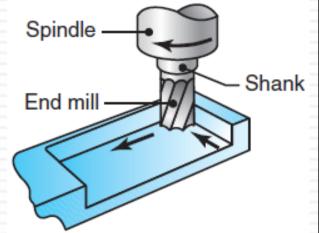
Material-removal Rate, Power Required, and Cutting Time in Face Milling

The material-removal rate is

 $MMR = (180)(600) = 108,000 \text{ mm}^3 / \text{min}$

The cutting time is
$$t = \frac{l+2l_c}{v} = \frac{500+2(75)}{10} = 65 \text{ s} = 1.08 \text{ min}$$

The feed per tooth is
$$f = \frac{10}{(1.67)(10)} = 0.6 \text{ mm/tooth}$$

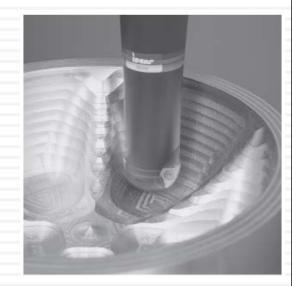

The power is Power = (1.1)(1800) = 1980 W = 1.98 kW

Copyright © 2010 Pearson Education South Asia Pte Ltd

End milling:

- Important and common machining process
- Versatile: produces various profiles, curved surfaces

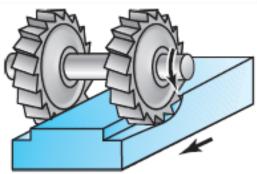
- Cutter (aka end mill):
 - Has straight shank, or
 - Tapered shank (for larger sizes)
 - Mounted into spindle of milling machine
 - Made of HSS or carbide inserts (like face milling)
 - Usually rotates on axis \perp to workpiece surface
 - Can be tilted to conform to curved surfaces



- Cont. end mills:
 - Available with hemispherical ends (aka ball nose mills →)
 - Can produce variety of surfaces, at any depth
 - Used in machining dies and molds
 - Examples:

curved, stepped, pocketed surfaces (\rightarrow)

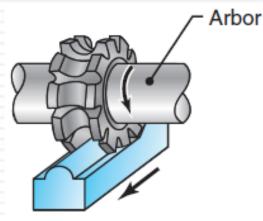
 Can remove material on both end and cylindrical cutting edges



Milling and Milling Machines:

Other Milling Operations and Milling Cutters

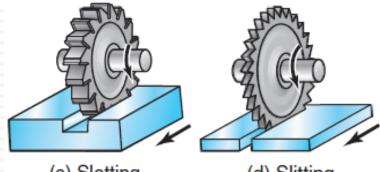
Straddle milling:


- Two or more cutters: mounted on an arbor
- Used to machine 2 // surfaces on workpiece

(a) Straddle milling

Form milling:

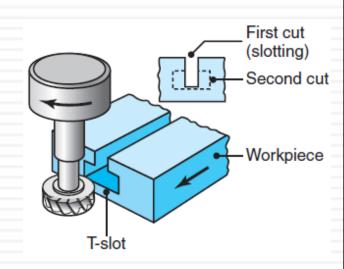
- Produces curved profiles
- Uses cutters with specially shaped teeth
- Also used for cutting gear teeth



⁽b) Form milling

Milling and Milling Machines: Other Milling Operations and Milling Cutters

Slotting & Slitting operations:


- Performed with circular cutters
- Slitting saws: thin (usu. < 5 mm)

(c) Slotting

T-slot cutters:

- Used to mill T-slots
- Application: machine-tool worktables for <u>clamping workpieces</u>
- Step 1: slot is milled with end mill
- Step 2: cutter machines profile of T-slot in one pass

⁽d) Slitting

Milling and Milling Machines: Milling Process Capabilities

- □ <u>Table 24.2</u> shows (for milling), conventional ranges of:
 - **D** Speeds (vary widely: 30 3000 m/min)
 - Feed per tooth (typically: 0.1 0.5 mm)
 - **Depths of cut (usually:** 1 8 mm)
- □ Note, large range of values shown is due to variance in:
 - Workpiece material
 - Workpiece condition
 - Cutting-tool material
 - Process parameters
- Note, cutting fluid recommendations:
 - Same as those used with turning/hole making operations

General Recommendations for Milling Operations

		General-purpose starting conditions		Range of conditions	
		Feed mm/tooth	Speed m/min	Feed mm/tooth	Speed m/min
Material	Cutting tool				
Low-carbon and free-machining steels	Uncoated carbide, coated carbide, cermets	0.13-0.20	120-180	0.085-0.38	90–425
Alloy steels					
Soft	Uncoated, coated, cermets	0.10-0.18	90–170	0.08-0.30	60-370
Hard	Cermets, PcBN	0.10-0.15	180-210	0.08-0.25	75-460
Cast iron, gray Soft	Uncoated, coated, cermets, SiN	0.10-10.20	120-760	0.08-0.38	90–1370
Hard	Cermets, SiN, PcBN	0.10-0.20	120-210	0.08-0.38	90-460
Stainless steel, Austenitic	Uncoated, coated, cermets	0.13-0.18	120-370	0.08-0.38	90–500
High-temperature alloys Nickel based	Uncoated, coated, cermets, SiN, PcBN	0.10-0.18	30-370	0.08-0.38	30-550
Titanium alloys	Uncoated, coated, cermets	0.13-0.15	50-60	0.08-0.38	40-140
Aluminum alloys					
Free machining	Uncoated, coated, PCD	0.13-0.23	610-900	0.08-0.46	300-3000
High silicon	PCD	0.13	610	0.08-0.38	370-910
Copper alloys	Uncoated, coated, PCD	0.13-0.23	300-760	0.08-0.46	90–1070
Plastics	Uncoated, coated, PCD	0.13-0.23	270-460	0.08-0.46	90–1370

Source: Based on data from Kennametal Inc.

Note: Depths of cut, *d*, usually are in the range of 1 to 8 mm. PcBN: polycrystalline cubic-boron nitride. PCD: polycrystalline diamond. See also Table 23.4 for range of cutting speeds within tool material groups.

Milling and Milling Machines: Design and Operating Guidelines for Milling

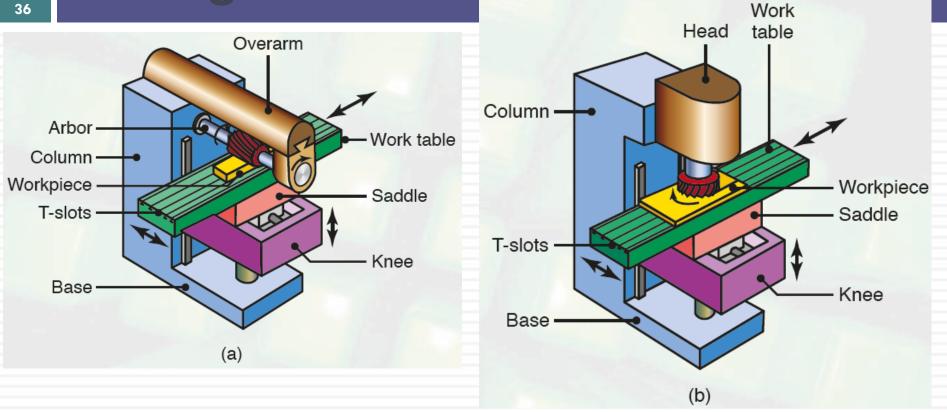
33

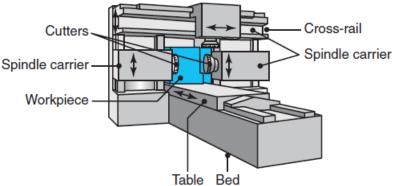
- Additional factors relevant to milling operations include:
 - Standard milling cutters should be used as much as possible
 - Chamfers should be specified (instead of radii)
 - Internal cavities, pockets with sharp corners should be avoided
 - Proper clearance should be provided in design for milling cutters
 - Workpieces should be rigid to minimize deflections
- Guidelines for avoiding vibration and chatter in milling:
 - Cutters should be mounted close to spindle base
 - Toolholders and fixturing devices should be rigid
 - In case of vibration/chatter: use cutter with fewer cutting teeth

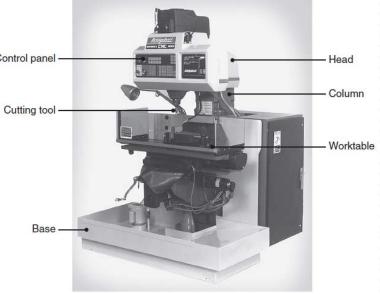
- Milling machines:
 - Among most versatile/useful machine tools
 - First milling machines: 1820 (Eli Whitney)
 - Machines today have many features
 - Standard milling machines now being replaced with computer controls and machining centers
 - Manually controlled machines: inexpensive, still used today for small production
 - Typical machines are described in upcoming slides

Column-and-knee-type Machines

- Used for general-purpose milling operations
- Most common milling machines
- Spindle on which cutter is mounted may be either (next):
 - Horizontal (for peripheral milling)
 - Vertical (for face and end milling, boring, drilling)
- Usually have 3 axes of movement
 - aka plain milling machines
 - Motion takes place manually or powered




Fig. 24.15 (a) Schematic illustration of a horizontal-spindle column-and-knee-type milling machine. (b) Schematic illustration of a vertical-spindle column-and-knee-type milling machine. *Source:* After G. Boothroyd.


Bed-type Milling Machines

- Worktable replaces knee
- Can move only longitudinally

Other Types of Milling Machines Control panel

- Planer-type milling machines:
 - Have several heads and cutters to mill different surfaces
- Computer numerical-control (CNC) machines (\rightarrow) :
 - Used for high production quantities
 - Capable of: milling, drilling, boring, tapping

