Buffer Capacity

Buffers:

\square Buffer solutions are solutions that can resist changes in pH upon addition of small amounts of acid/base.
\square Common buffer mixtures contain two substances: conjugate acid and a conjugate base .
\square Together the two species (conjugate acid and conjugate base) resist large chamges iin pill by absorbing the $\mathrm{H}+$ ions or OH - ions added to the system.

How buffers resist the change in pH :

1. When \mathbf{H}^{+}ions are added to the buffer system they will react with the conjugate base in the buffer as following:

$$
\mathrm{H}^{+}+\mathrm{A}^{-} \longleftrightarrow \mathrm{HA}
$$

2. When $\mathbf{O H}^{-}$ions are added they will react with the conjugate acid in the buffer as following:

$$
\mathrm{OH}^{-}+\mathrm{HA} \longleftrightarrow \mathrm{~A}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

\rightarrow Thus the buffer is effective as long as it does not run out of one of its components.

Buffer Capacity:

- Quantitative measure of this resistance to pH changes is called buffer capacity,

Buffer capacity can be defined in many ways, it can be defined as:
\rightarrow The number of moles of $\mathrm{H}^{+} / \mathrm{OH}^{-}$ions that must be added to one liter of the buffer in order to decrease /increase the pH by one unit respectively.
\square The buffer capacity is expressed as $\boldsymbol{\beta}$ and can be derived from Henderson Hasselbalch equation:

$$
\beta=\frac{2.3 K_{a}\left[\mathbf{H}^{+}\right][C]}{\left(K_{a}+\left[\mathbf{H}^{+}\right]\right)^{2}}
$$

\square Where :

$\beta=$ the buffer capacity, $[\mathrm{H}+]=$ the hydrogen ion concentration of the buffer, $[\mathrm{C}]=$ concentration of the buffer and $\mathrm{Ka}=\mathrm{acid}$ dissociation constant

Praciical Par\}

Objective:

\square To understand the concept of buffer capacity.
\square To determine the maximum buffer capacity of a number of buffer solutions.
\square To establish the relationship between buffer capacity and buffer concentration.

Method:

\square You are provided with two acetate buffer $(\mathrm{pH}=5) ; 0.1 \mathrm{M}$ acetate buffer and 0.2 M acetate buffer .
\square In one beaker add 8 ml of the 0.1 M acetate buffer buffer, and in another beaker add 8 ml of 0.2 M acetate buffer.
\square Start the titration by adding 0.5 ml of 0.1 M HCl from the burette and determine the pH of the solution after each addition.
\square Continue adding acid in until pH falls to about 2 pH units from your starting pH .
\square Plot a Curve of pH against ml of HCl added.
\square Calculate the buffer capacity (which one has higher buffer capacity. why?)

What do you conclude finally about the relationship between, Buffer concentration and buffer capacity?

Results:

Titration of 0.1 M of acetate buffer with 2M HCl

What do you conclude finally about the relationship between, Buffer concentration and buffer capacity?

Results:

