Buffer Capacity

Buffer Capacity:

- Quantitative measure of buffer resistance to pH changes is called buffer capacity.
- Buffer capacity can be defined in many ways, it can be defined as:
\rightarrow The number of moles of $\mathrm{H}^{+} / \mathrm{OH}^{-}$ions that must be added to one liter of the buffer in order to decrease /increase the pH by one unit respectively.
\square The instantaneous buffer capacity is expressed as $\boldsymbol{\beta}$ and can be derived from Henderson Hasselbalch equation:

$$
\beta=\frac{2.3 K_{a}\left[\mathbf{H}^{+}\right][C]}{\left(K_{a}+\left[\mathbf{H}^{+}\right]\right)^{2}}
$$

From the equation \rightarrow the buffer capacity is directly proportional to the buffer concentration.

- Where:
$\beta=$ the buffer capacity,$[\mathrm{H}+]=$ the hydrogen ion concentration of the buffer , $[\mathrm{C}]=$ concentration of the buffer and $\mathrm{Ka}=$ acid dissociation constant.

Practical buffer capacity:

- Buffer capacity of acid and alkaline direction:
\rightarrow Buffer capacity ${ }_{\mathrm{a}}\left(\mathbf{B C}_{\mathbf{a}}\right)=$ the number of moles of H^{+}that must be added to one liter of the buffer in order to decrease the pH by one unite.

This called buffer capacity in the ACID direction.

$$
\mathrm{BC}_{\mathrm{a}}=\frac{9[\mathrm{HA}]\left[\mathrm{A}^{-}\right]}{10[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]}
$$

\rightarrow Buffer capacity ${ }_{\mathrm{b}}\left(\mathbf{B C}_{\mathbf{b}}\right)=$ the number of moles of OH^{-}that must be added to one liter of the buffer in order to increase the pH by one unite.

This called buffer capacity in the ALKAILNE direction.

$$
\mathrm{BC}_{\mathrm{b}}=\frac{9\left[\mathrm{HA}^{2}\right]\left[\mathrm{A}^{-}\right]}{10\left[\mathrm{~A}^{-}\right]+[\mathrm{HA}]}
$$

Buffer capacity in acid and base direction:

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

Buffer solution after addition of strong acid

Buffer capacity in acid and base direction:

Titration of buffer with acid and base:

Titration of Ethanoic Acid Buffer with Sodium Hydroxide Solution

Titration of Ethanoic Acid Buffer with Hydrochloric Acid

Figure 6 (a) Ethanoic acid buffer with a strong base added (b) Ethanoic acid buffer with a strong acid added. The pH changes quickly once all of the available buffer is depleted.

Calculate the instantaneous (β) and the practical buffer capacity in

both directions of a 0.05 M Tricine buffer, $\mathrm{pH} 7.5, \mathrm{pKa}=8.15$.

First calculate the concentration of the weak base and its conjugated acid that make up the buffer with 0.05 M :

$$
\begin{aligned}
& 7.5=8.15+\log \frac{[\mathrm{A}-]}{[\mathrm{HA}]} \rightarrow-0.65=\log \frac{[\mathrm{A}-]}{[\mathrm{HA}]} \rightarrow \text { Anti } \log \text { for both sides } \rightarrow 0.224=\frac{[\mathrm{A}-]}{[\mathrm{HA}]} \\
& \text { SO: }[\mathrm{A}-]=\frac{0.224}{1.224} \times 0.05=\mathbf{0 . 0 0 9 \mathbf { M }} \quad,[\mathrm{HA}-]=\frac{1}{1.224} \times 0.05=\underline{\mathbf{0 . 0 4 1} \mathbf{M}} \\
& \text { * since the } \mathrm{pH}<\mathrm{pKa}, \text { the }[\mathrm{HA}] \text { will be higher than }\left[\mathrm{A}^{-}\right] .
\end{aligned}
$$

Calculate the instantaneous buffer capacity:

$$
\beta=\frac{2.3 \mathrm{Ka}\left[\mathrm{H}^{+}\right][\mathrm{C}]}{\left(\mathrm{Ka}+\left[\mathrm{H}^{+}\right]\right)^{2}} \rightarrow \frac{2.3 \times 7.08 \times 10^{-9} \times 3.16 \times 10^{-8} \times 0.05}{\left(7.08 \times 10^{-9}+3.16 \times 10^{-8}\right)^{2}} \rightarrow \beta=0.017 \mathrm{M}
$$

OR

$$
\beta=\frac{2.3[\mathrm{HA}]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]} \rightarrow \frac{2.3 \times 0.041 \times 0.009}{0.041+0.009} \Rightarrow \beta=0.017 \mathrm{M}
$$

Bxample cont': Calculate the instantaneous (β) and the practical buffer capacity in both directions of a 0.05 M Tricine buffer, $\mathrm{pH} 7.5, \mathrm{pKa}=8.15$.

Calculate the practical buffer capacity in both directions:

$$
\begin{aligned}
\mathrm{BC}_{\mathrm{a}}=\frac{9[\mathrm{HA}]\left[\mathrm{A}^{-}\right]}{10[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]} \rightarrow \frac{9 \times 0.041 \times 0.009}{(10 \times 0.041)+0.009} & \rightarrow \mathrm{BC}_{\mathrm{a}}=0.008 \mathrm{M}=[\mathrm{H}+] \\
\mathrm{BC}_{\mathrm{b}}=\frac{9[\mathrm{HA}]\left[\mathrm{A}^{-}\right]}{10\left[\mathrm{~A}^{-}\right]+[\mathrm{HA}]} \rightarrow \frac{9 \times 0.041 \times 0.009}{(10 \times 0.009)+0.041} & \rightarrow \mathrm{BC}_{\mathrm{b}}=0.026 \mathrm{M}=[\mathrm{OH}-]
\end{aligned}
$$

Praciical Par\}

Objective:

\square To understand the concept of buffer capacity.
\square To determine the buffer capacity in alkaline and acid directions.

Method:

\square You are provided 0.1 M acetate buffer $(\mathrm{pH}=5)$.
\square In two beakers add 8 ml of the 0.1 M acetate buffer.
\square Titrate the first beaker by adding 0.5 ml of 0.1 M HCl and the second one by 0.1 M NaOH from the burette and determine the pH of the solution after each addition.
\square Continue adding the acid/base until you record a notable change in the pH .
\square Record the titration table.

Results:

\square Plot a curve of pH against the volume (ml) of HCl and NaOH added. calculate pH after addition of $0.5 \mathrm{ml}, 2 \mathrm{ml}$ of HCl .
\square Calculate the buffer capacity in both direction from the graph and the formula.
\square Determine the buffering region.

Titration of 0.1 M acetate buffer

Discussion:

\square Compare between the value of the buffer capacity you got from the curve and formula.
\square Did your buffer have a larger capacity for acid or base? Why?

- How can you relate your results with the buffer pH .

