BCH312 [Practical]

Buffer Capacity

• Quantitative measure of buffer resistance to pH changes is called **<u>buffer capacity.</u>**

Buffer capacity can be defined in many ways, it can be defined as:

The number of moles of H^+/OH^- ions that must be added to <u>one liter</u> of the buffer in order to decrease /increase the pH by <u>one unit</u> respectively.

The instantaneous buffer capacity is **expressed as** β and can be derived from Henderson Hasselbalch equation:

□ Where :

 β = the buffer capacity , [H+] = the hydrogen ion concentration of the buffer , [C] = concentration of the buffer and Ka= acid dissociation constant.

Practical buffer capacity:

Buffer capacity of acid and alkaline direction:

→ Buffer capacity $_{a}(BC_{a}) =$ the number of moles of H⁺ that must be added to one liter of the buffer in order to decrease the pH by one unite.

This called buffer capacity in the ACID direction.

$$BC_{a} = \frac{9[HA] [A^{-}]}{10 [HA] + [A^{-}]}$$

→ Buffer capacity $_{b}(BC_{b}) =$ the number of moles of OH⁻ that must be added to one liter of the buffer in order to <u>increase the pH by one unite</u>.

This called buffer capacity in the ALKAILNE direction.

$$BC_{b} = \frac{9[HA] [A^{-}]}{10 [A^{-}] + [HA]}$$

Buffer capacity in acid and base direction:

 $CH_3COOH(aq) + H_2O(l) = H_3O^+(aq) + CH_3COO^-(aq)$

Buffer capacity in acid and base direction:

Titration of buffer with acid and base:

Figure 6 (a) Ethanoic acid buffer with a strong base added (b) Ethanoic acid buffer with a strong acid added. The pH changes quickly once all of the available buffer is depleted.

Example: Calculate the instantaneous (β) and the practical buffer capacity in both directions of a 0.05 M Tricine buffer, pH 7.5, pKa = 8.15.

First calculate the concentration of the weak base and its conjugated acid that make up the buffer with 0.05M:
7.5 = 8.15 +log
$$\frac{[A-]}{[HA]}$$
 \rightarrow -0.65= log $\frac{[A-]}{[HA]}$ \rightarrow Anti log for both sides \rightarrow 0.224 = $\frac{[A-]}{[HA]}$
SO: $[A-] = \frac{0.224}{1.224} \times 0.05 \equiv 0.009 \text{ M}$, $[HA-] = \frac{1}{1.224} \times 0.05 = 0.041 \text{ M}$
* since the pH < pKa, the [HA] will be higher than [A⁻].

Calculate the instantaneous buffer capacity:

$$\beta = \frac{2.3 \text{ Ka [H^+][C]}}{(\text{Ka + [H^+])^2}} \Rightarrow \frac{2.3 \text{ x } 7.08 \text{ x } 10^{-9} \text{ x } 3.16 \text{ x } 10^{-8} \text{ x } 0.05}}{(7.08 \text{ x } 10^{-9} + 3.16 \text{ x } 10^{-8})^2} \Rightarrow \beta = 0.017 \text{ M}$$

$$\beta = \frac{2.3 \text{ [HA] [A^-]}}{[\text{HA}] + [\text{A}^-]} \Rightarrow \frac{2.3 \text{ x } 0.041 \text{ x } 0.009}{0.041 + 0.009} \Rightarrow \beta = 0.017 \text{ M}$$

Example cont': Calculate the instantaneous (β) and the practical buffer

capacity in both directions of a 0.05 M Tricine buffer, pH 7.5, pKa = 8.15.

<u>Calculate the practical buffer capacity in both directions:</u>

Prestieel Pert

□ To understand the concept of buffer capacity.

□ To determine the buffer capacity in alkaline and acid directions.

- □ You are provided 0.1 M acetate buffer (pH=5).
- □ In two beakers add 8ml of the 0.1 M acetate buffer.
- Titrate the first beaker by adding 0.5 ml of 0.1 M HCl and the second one by 0.1 M NaOH from the burette and determine the pH of the solution after each addition.
- □ Continue adding the acid/base until you record a notable change in the pH.
- □ Record the titration table.

- Plot a curve of pH against the volume (ml) of HCl and NaOH added. calculate pH after addition of 0.5 ml, 2ml of HCl.
- □ Calculate the buffer capacity in both direction from the graph and the formula.
- Determine the buffering region.

- Compare between the value of the buffer capacity you got from the curve and formula.
- Did your buffer have a larger capacity for acid or base? Why?
- □ How can you relate your results with the buffer pH.