

Gases

Chapter 5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Elements that exist as gases at $25^{\circ} \mathrm{C}$ and 1 atmosphere

lonic compounds can not be gases at $25^{\circ} \mathrm{C}$ and 1 atm because of its strong ionic forces
Molecular compounds at $25^{\circ} \mathrm{C}$ and 1 atm varies some are gases $\mathrm{CO}, \mathrm{HCl}$ and others are liquid or solid $\mathrm{CH}_{3} \mathrm{OH}$

No simple rule to help determine if substance is g or $/$ or s It depends on magnitude of the intermolecular forces among molecules ${ }^{2}$

TABLE 5.1 Some Substances Found as Gases at 1 atm and $25^{\circ} \mathrm{C}$

Elements

H_{2} (molecular hydrogen)
N_{2} (molecular nitrogen)
O_{2} (molecular oxygen)
O_{3} (ozone)
F_{2} (molecular fluorine)
Cl_{2} (molecular chlorine)
He (helium)
Ne (neon)
Ar (argon)
Kr (krypton)
Xe (xenon)
Rn (radon)

Compounds

HF (hydrogen fluoride)
HCl (hydrogen chloride)
HBr (hydrogen bromide)
HI (hydrogen iodide)
CO (carbon monoxide)
CO_{2} (carbon dioxide)
NH_{3} (ammonia)
NO (nitric oxide)
NO_{2} (nitrogen dioxide)
$\mathrm{N}_{2} \mathrm{O}$ (nitrous oxide)
SO_{2} (sulfur dioxide)
$\mathrm{H}_{2} \mathrm{~S}$ (hydrogen sulfide)
HCN (hydrogen cyanide)*

- Gases assume the volume and shape of their containers.
- Gases are the most compressible state of matter.
- Gases will mix evenly and completely when confined to the same container.
- Gases have much lower densities than liquids and solids.

NO_{2} gas

Pressure $=\frac{\text { Force }}{\text { Area }}$

(force = mass x acceleration)

Units of Pressure

1 pascal $(\mathrm{Pa})=1 \mathrm{~N} / \mathrm{m}^{2}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}=760$ torr
$1 \mathrm{~atm}=101,325 \mathrm{~Pa}$

- The result of weight of the column of air above it.
- Act on all directions (not down word only)
- Depends on location,T, Weather conditions

EXAMPLE 5.1

The pressure outside a jet plane flying at high altitude falls considerably below standard atmospheric pressure. Therefore, the air inside the cabin must be pressurized to protect the passengers. What is the pressure in atmospheres in the cabin if the barometer reading is 688 mmHg ?
Solution The pressure in the cabin is given by

$$
\begin{aligned}
\text { pressure } & =688 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}} \\
& =0.905 \mathrm{~atm}
\end{aligned}
$$

EXAMPLE 5.2

The atmospheric pressure in San Francisco on a certain day was 732 mmHg . What was the pressure in kPa ?

Solution The pressure in kPa is

$$
\begin{aligned}
\text { pressure } & =732 \mathrm{mmHg} \times \frac{1.01325 \times 10^{5} \mathrm{~Pa}}{760 \mathrm{mmHg}} \\
& =9.76 \times 10^{4} \mathrm{~Pa} \\
& =97.6 \mathrm{kPa}
\end{aligned}
$$

Boyle's Law

Constant temperature
Constant amount of gas

A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg . What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 mL ?

$$
\begin{gathered}
P \times V=\text { constant } \\
P_{1} \times V_{1}=P_{2} \times V_{2} \\
P_{1}=726 \mathrm{mmHg} \quad P_{2}=? \\
V_{1}=946 \mathrm{~mL} \quad V_{2}=154 \mathrm{~mL} \\
P_{2}=\frac{P_{1} \times V_{1}}{V_{2}}=\frac{726 \mathrm{mmHg} \times 946 \mathrm{~m} \text { 㖛 }}{154 \mathrm{mt}}=4460 \mathrm{mmHg}
\end{gathered}
$$

Charles' \& Gay-Lussac’s Law

Variation in Gas Volume with Temperature at Constant Pressure

Low
temperature
As Tincreases

High temperature
V increases

Variation of Gas Volume with Temperature at Constant Pressure

$$
\begin{array}{ll}
V \alpha T & \begin{array}{l}
\text { Temperature must be } \\
\text { in Kelvin }
\end{array} \\
V=\text { constant } \times T & T(\mathrm{~K})=t\left({ }^{\circ} \mathrm{C}\right)+273.15 \\
V_{1} / T_{1}=V_{2} / T_{2} & \tag{11}
\end{array}
$$

A sample of carbon monoxide gas occupies 3.20 L at $125^{\circ} \mathrm{C}$. At what temperature will the gas occupy a volume of 1.54 L if the pressure remains constant?

$$
\begin{gathered}
V_{1} / T_{1}=V_{2} / T_{2} \\
V_{1}=3.20 \mathrm{~L} \quad V_{2}=1.54 \mathrm{~L} \\
T_{1}=398.15 \mathrm{~K} \quad T_{2}=? \\
T_{1}=125\left({ }^{\circ} \mathrm{C}\right)+273.15(\mathrm{~K})=398.15 \mathrm{~K} \\
T_{2}=\frac{V_{2} \times T_{1}}{V_{1}}=\frac{1.54 \mathrm{~L} \times 398.15 \mathrm{~K}}{3.20 \swarrow \mathrm{~L}}=192 \mathrm{~K}
\end{gathered}
$$

Avogadro’s Law

$V \alpha$ number of moles (n)

$V=$ constant $\times n$

$$
V_{1} / n_{1}=V_{2} / n_{2}
$$

$3 \mathrm{H}_{2}(\mathrm{~g})$
3 molecules
3 moles
3 volumes

Ammonia burns in oxygen to form nitric oxide (NO) and water vapor. How many volumes of NO are obtained from one volume of ammonia at the same temperature and pressure?
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
1 mole $\mathrm{NH}_{3} \longrightarrow 1$ mole NO
At constant T and P
1 volume $\mathrm{NH}_{3} \longrightarrow 1$ volume NO

Summary of Gas Laws

Boyle's Law

Increasing or decreasing the volume of a gas
at a constant temperature

$$
\begin{gathered}
\text { Boyle's Law } \\
P=(n R T) \frac{1}{V} \quad n R T \text { is constant }
\end{gathered}
$$

Charles Law

Heating or cooling a gas at constant pressure

$$
\begin{gathered}
\text { Charles's Law } \\
V=\left(\frac{n R}{P}\right) T \quad \frac{n R}{P} \text { is constant }
\end{gathered}
$$

Heating or cooling a gas at constant volume

$\xrightarrow{\text { Higher temperature }}$ (Pressure increases)

$$
\begin{gathered}
\text { Charles's Law } \\
P=\left(\frac{n R}{V}\right) T \quad \frac{n R}{V} \text { is constant }
\end{gathered}
$$

Avogadro's Law

Dependence of volume on amount
of gas at constant temperature and pressure

Ideal Gas Equation

Boyle's law: $\mathrm{P} \alpha \frac{1}{V}$ (at constant n and T)
Charles' law: $V \alpha T$ (at constant n and P)
Avogadro's law: $\mathrm{V} \alpha n$ (at constant P and T)
$V \alpha \frac{n T}{P}$
$V=$ constant $\times \frac{n T}{P}=R \frac{n T}{P}$
R is the gas constant

$$
P V=n R T
$$

The conditions $0^{\circ} \mathrm{C}$ and 1 atm are called standard temperature and pressure (STP).

Experiments show that at STP, 1 mole of an ideal gas occupies 22.414 L .
$P V=n R T$

$R=\frac{P V}{n T}=\frac{(1 \mathrm{~atm})(22.414 \mathrm{~L})}{(1 \mathrm{~mol})(273.15 \mathrm{~K})}$
$R=0.082057 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{K})$

It is a hypothetical gas which follows ideal gas equation Ideal gas:
d don't attract or repel one another
It's volume is negligible compare to the volume of the container

If all variables changes we use:
$\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}} \quad \underset{\text { thus }}{\text { In general } n_{1}=n_{2}} \quad \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$

What is the volume (in liters) occupied by 49.8 g of HCl at STP?

$$
\begin{aligned}
& T=0^{\circ} \mathrm{C}=273.15 \mathrm{~K} \\
& P=1 \mathrm{~atm}
\end{aligned}
$$

$$
\begin{aligned}
P V & =n R T \\
V & =\frac{n R T}{P}
\end{aligned}
$$

$$
n=49.8 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.45 \mathrm{~g} \mathrm{HCl}}=1.37 \mathrm{~mol}
$$

$$
V=\frac{1.37 \mathrm{mot} \times 0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{mot} \cdot \mathrm{~K}} \times 273.15 \mathrm{~K}}{1 \mathrm{~atm}}
$$

$V=30.7 \mathrm{~L}$

Argon is an inert gas used in lightbulbs to retard the vaporization of the filament. A certain lightbulb containing argon at 1.20 atm and $18^{\circ} \mathrm{C}$ is heated to $85^{\circ} \mathrm{C}$ at constant volume. What is the final pressure of argon in the lightbulb (in atm)?
$P V=n R T \quad n, V$ and R are constant

$$
\begin{array}{lll}
\frac{n R}{V}=\frac{P}{T}=\mathrm{constant} & P_{1}=1.20 \mathrm{~atm} & P_{2}=? \\
& T_{1}=291 \mathrm{~K} & T_{2}=358 \mathrm{~K}
\end{array}
$$

$$
\begin{aligned}
& \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \\
& P_{2}=P_{1} \times \frac{T_{2}}{T_{1}}=1.20 \mathrm{~atm} \times \frac{358 \mathrm{~K}}{291 \mathrm{~K}}=1.48 \mathrm{~atm}
\end{aligned}
$$

EXAMPLE 5.3

Sulfur hexafluoride $\left(\mathrm{SF}_{6}\right)$ is a colorless, odorless, very unreactive gas. Calculate the pressure (in atm) exerted by 1.82 moles of the gas in a steel vessel of volume 5.43 L at $69.5^{\circ} \mathrm{C}$.
Solution Because no changes in gas properties occur, we can use the ideal gas equation to calculate the pressure. Rearranging Equation (5.8), we write

$$
\begin{aligned}
P & =\frac{n R T}{V} \\
& =\frac{(1.82 \mathrm{~mol})(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol})(69.5+273) \mathrm{K}}{5.43 \mathrm{~L}} \\
& =9.42 \mathrm{~atm}
\end{aligned}
$$

EXAMPLE 5.4

Calculate the volume (in liters) occupied by 7.40 g of NH_{3} at STP.
Solution Recognizing that 1 mole of an ideal gas occupies 22.41 L at STP and using the molar mass of $\mathrm{NH}_{3}(17.03 \mathrm{~g})$, we write the sequence of conversions as

$$
\text { grams of } \mathrm{NH}_{3} \longrightarrow \text { moles of } \mathrm{NH}_{3} \longrightarrow \text { liters of } \mathrm{NH}_{3} \text { at STP }
$$

so the volume of NH_{3} is given by

$$
\begin{aligned}
V & =7.40 \mathrm{~g} \mathrm{NH}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{3}}{17.03 \mathrm{~g} \mathrm{NH}_{3}} \times \frac{22.41 \mathrm{~L}}{1 \mathrm{~mol} \mathrm{NH}_{3}} \\
& =9.74 \mathrm{~L}
\end{aligned}
$$

It is often true in chemistry, particularly in gas-law calculations, that a problem can be solved in more than one way. Here the problem can also be solved by first converting 7.40 g of NH_{3} to number of moles of NH_{3}, and then applying the ideal gas equation $(V=n R T / P)$. Try it.

Examples

1) 20.8 g of CH_{4} gas was confined in 5.200 L vessel at 50 ${ }^{0} \mathrm{C}$.Calculate the pressure exerted by the gas?
$\mathcal{M}_{\mathrm{CH}_{4}}=16.04 \mathrm{~g} \mathrm{~mol}^{-1} \quad 6.529 \mathrm{~atm}$
2) 1.05 L balloon at $25^{\circ} \mathrm{C}$, Calculate it's volume in a summer day at $50^{\circ} \mathrm{C}$?

$$
1.138 \mathrm{~L}
$$

3) Gas volume is 2.31 L at 1 atm , Calculate it's pressure in mmHg when it's volume becomes 7.32 L ?
239.8 mmHg

Density (d) Calculations

$$
d=\frac{m}{V}=\frac{P \mathcal{M}}{R T} \quad \begin{aligned}
& m \text { is the mass of the gas in } \mathrm{g} \\
& \mathcal{M} \text { is the molar mass of the gas }
\end{aligned}
$$

Molar Mass (\mathcal{M}) of a Gaseous Substance

$\mathcal{M}=\frac{d R T}{P}$
d is the density of the gas in g / L

A 2.10-L vessel contains 4.65 g of a gas at 1.00 atm and 27.0 ${ }^{\circ} \mathrm{C}$. What is the molar mass of the gas?

$$
\begin{gathered}
\mathcal{M}=\frac{d R T}{P} \quad d=\frac{m}{V}=\frac{4.65 \mathrm{~g}}{2.10 \mathrm{~L}}=2.21 \frac{\mathrm{~g}}{\mathrm{~L}} \\
\mathcal{M}=\frac{2.21 \frac{\mathrm{~g}}{\mathrm{~L}} \times 0.0821 \frac{\mathrm{~K} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 300.15 \mathrm{~K}}{1 \mathrm{at} m}
\end{gathered}
$$

$\mathcal{M}=54.5 \mathrm{~g} / \mathrm{mol}$

EXAMPLE 5.9

A chemist has synthesized a greenish-yellow gaseous compound of chlorine and oxygen and finds that its density is $7.71 \mathrm{~g} / \mathrm{L}$ at $36^{\circ} \mathrm{C}$ and 2.88 atm . Calculate the molar mass of the compound and determine its molecular formula.

Solution From Equation (5.12)

$$
\begin{aligned}
\mu & =\frac{d R T}{P} \\
& =\frac{(7.71 \mathrm{~g} / \mathrm{L})(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol})(36+273) \mathrm{K}}{2.88 \mathrm{~atm}} \\
& =67.9 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Alternatively, we can solve for the molar mass by writing

$$
\text { molar mass of compound }=\frac{\text { mass of compound }}{\text { moles of compound }}
$$

From the given density we know there are 7.71 g of the gas in 1 L . The number of moles of the gas in this volume can be obtained from the ideal gas equation

$$
\begin{aligned}
n & =\frac{P V}{R T} \\
& =\frac{(2.88 \mathrm{~atm})(1.00 \mathrm{~L})}{(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol})(309 \mathrm{~K})} \\
& =0.1135 \mathrm{~mol}
\end{aligned}
$$

Therefore, the molar mass is given by

$$
\mu=\frac{\text { mass }}{\text { number of moles }}=\frac{7.71 \mathrm{~g}}{0.1135 \mathrm{~mol}}=67.9 \mathrm{~g} / \mathrm{mol}
$$

EXAMPLE 5.10

Chemical analysis of a gaseous compound showed that it contained 33.0 percent silicon (Si) and 67.0 percent fluorine (F) by mass. At $35^{\circ} \mathrm{C}, 0.210 \mathrm{~L}$ of the compound exerted a pressure of 1.70 atm . If the mass of 0.210 L of the compound was 2.38 g , calculate the molecular formula of the compound.
Solution

$$
\begin{aligned}
& n_{\mathrm{Si}}=33.0 \mathrm{~g}-\mathrm{Si} \times \frac{1 \mathrm{~mol} \mathrm{Si}}{28.09 \mathrm{~g}-\mathrm{Si}}=1.17 \mathrm{~mol} \mathrm{Si} \\
& n_{\mathrm{F}}=67.0 \mathrm{gF} \times \frac{1 \mathrm{~mol} \mathrm{~F}}{19.00 \mathrm{gF}}=3.53 \mathrm{~mol} \mathrm{~F}
\end{aligned}
$$

Therefore, the empirical formula is $\mathbf{S i}_{1.17} \mathrm{~F}_{3.53}$, or, dividing by the smaller subscript (1.17), we obtain SiF_{3}.

To calculate the molar mass of the compound, we need first to calculate the number of moles contained in 2.38 g of the compound. From the ideal gas equation

$$
\begin{aligned}
n & =\frac{P V}{R T} \\
& =\frac{(1.70 \mathrm{~atm})(0.210 \mathrm{~L})}{(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol})(308 \mathrm{~K})}=0.0141 \mathrm{~mol}
\end{aligned}
$$

Because there are 2.38 g in 0.0141 mole of the compound, the mass in 1 mole , or the molar mass, is given by

$$
\mathcal{M}=\frac{2.38 \mathrm{~g}}{0.0141 \mathrm{~mol}}=169 \mathrm{~g} / \mathrm{mol}
$$

The molar mass of the empirical formula SiF_{3} is 85.09 g . Recall that the ratio (molar mass/empirical molar mass) is always an integer ($169 / 85.09 \approx 2$). Therefore, the molecular formula of the compound must be $\left(\mathrm{SiF}_{3}\right)_{2}$ or $\mathrm{Si}_{2} \mathrm{~F}_{6}$.

Gas Stoichiometry

What is the volume of CO_{2} produced at $37^{\circ} \mathrm{C}$ and 1.00 atm when 5.60 g of glucose are used up in the reaction:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) \longrightarrow 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}()
$$

$\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow \mathrm{~mol} \mathrm{CO}_{2} \longrightarrow V \mathrm{CO}_{2}$
$5.60 \mathrm{~g}_{6} \mathrm{H}_{1 \mathrm{H}_{2} \mathrm{O}_{6}} \times \frac{1 \mathrm{mot}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180 \mathrm{~g}-\mathrm{C}_{6} \mathrm{~F}_{12} \mathrm{O}_{6}} \times \frac{6 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{mot}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=0.187 \mathrm{~mol} \mathrm{CO}_{2}$

Dalton's Law of Partial Pressures

V and T are constant

P_{2}

$$
P_{\text {total }}=P_{1}+P_{2}
$$

Consider a case in which two gases, A and B, are in a container of volume V .

$$
\begin{array}{ll}
P_{\mathrm{A}}=\frac{n_{\mathrm{A}} \mathrm{RT}}{V} & n_{\mathrm{A}} \text { is the number of moles of } \mathrm{A} \\
P_{\mathrm{B}}=\frac{n_{\mathrm{B}} \mathrm{RT}}{V} & n_{\mathrm{B}} \text { is the number of moles of } \mathrm{B} \\
P_{\mathrm{T}}=P_{\mathrm{A}}+P_{\mathrm{B}} & X_{\mathrm{A}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \quad X_{\mathrm{B}}=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \\
P_{\mathrm{A}}=X_{\mathrm{A}} P_{\mathrm{T}} & P_{\mathrm{B}}=X_{\mathrm{B}} P_{\mathrm{T}}
\end{array}
$$

$$
P_{i}=X_{i} P_{\mathrm{T}}
$$

$$
\text { mole fraction }\left(X_{i}\right)=\frac{n_{i}}{n_{T}}
$$

A sample of natural gas contains 8.24 moles of $\mathrm{CH}_{4}, 0.421$ moles of $\mathrm{C}_{2} \mathrm{H}_{6}$, and 0.116 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$. If the total pressure of the gases is 1.37 atm , what is the partial pressure of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$?

$$
\begin{aligned}
& P_{i}=X_{i} P_{\mathrm{T}} \quad P_{\mathrm{T}}=1.37 \mathrm{~atm} \\
& X_{\text {propane }}=\frac{0.116}{8.24+0.421+0.116}=0.0132 \\
& P_{\text {propane }}=0.0132 \times 1.37 \mathrm{~atm}=0.0181 \mathrm{~atm}
\end{aligned}
$$

Collecting a Gas over Water

$$
\begin{aligned}
2 \mathrm{KClO}_{3}(s) & \longrightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g) \\
P_{\mathrm{T}} & =P_{\mathrm{O}_{2}}+P_{\mathrm{H}_{2} \mathrm{O}}
\end{aligned}
$$

TABLE 5.3
Pressure of Water Vapor at Various Temperatures

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Water Vapor Pressure $(\mathbf{m m H g})$
0	4.58
5	6.54
10	9.21
15	12.79
20	17.54
25	23.76
30	31.82
35	42.18
40	55.32
45	71.88
50	92.51
55	118.04
60	149.38
65	187.54
70	233.7
75	289.1
80	355.1
85	433.6
90	525.76
95	633.90
100	760.00

EXAMPLE 5.15

Oxygen gas generated by the decomposition of potassium chlorate is collected as shown in Figure 5.15. The volume of oxygen collected at $24^{\circ} \mathrm{C}$ and atmospheric pressure of 762 mmHg is 128 mL . Calculate the mass (in grams) of oxygen gas obtained. The pressure of the water vapor at $24^{\circ} \mathrm{C}$ is 22.4 mmHg .
Solution From Dalton's law of partial pressures we know that

$$
P_{\mathrm{T}}=P_{\mathrm{O}_{2}}+P_{\mathrm{H}_{2} \mathrm{O}}
$$

Therefore,

$$
\begin{aligned}
P_{\mathrm{O}_{2}} & =P_{\mathrm{T}}-P_{\mathrm{H}_{2} \mathrm{O}} \\
& =762 \mathrm{mmHg}-22.4 \mathrm{mmHg} \\
& =740 \mathrm{mmHg}
\end{aligned}
$$

From the ideal gas equation we write

$$
P V=n R T=\frac{m}{M} R T
$$

where m and μ are the mass of O_{2} collected and the molar mass of O_{2}, respectively. Rearranging the equation we obtain

$$
\begin{aligned}
m=\frac{P V M}{R T} & =\frac{(740 / 760) \mathrm{atm}(0.128 \mathrm{~L})(32.00 \mathrm{~g} / \mathrm{mol})}{(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol})(273+24) \mathrm{K}} \\
& =0.164 \mathrm{~g}
\end{aligned}
$$

Calculate the mass of $\mathrm{Zn}_{(\mathrm{s})}$ used to produce $\mathrm{H}_{2(\mathrm{~g})}$ over water at $25.0^{\circ} \mathrm{C}$ in a 7.80 L vessel and pressure 0.980 atm knowing that $p_{\mathrm{H}_{2} \mathrm{O}}=23.8 \mathrm{mmHg}$ according to the following equation:

$$
\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{g})} \longrightarrow \mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

$$
m_{z n}=19.8 \mathrm{~g}
$$

Kinetic Molecular Theory of Gases

1. A gas is composed of molecules that are separated from each other by distances far greater than their own dimensions. The molecules can be considered to be points; that is, they possess mass but have negligible volume.
2. Gas molecules are in constant motion in random directions, and they frequently collide with one another. Collisions among molecules are perfectly elastic.
3. Gas molecules exert neither attractive nor repulsive forces on one another.
4. The average kinetic energy of the molecules is proportional to the temperature of the gas in kelvins. Any two gases at the same temperature will have the same average kinetic energy

$$
\overline{\mathrm{KE}}=1 / 2 m \overline{u^{2}}
$$

Kinetic theory of gases and ...

- Compressibility of Gases
- Boyle's Law
$P \alpha$ collision rate with wall
Collision rate α number density
Number density $\alpha 1 / V$
$P \propto 1 / V$
- Charles' Law
$P \alpha$ collision rate with wall
Collision rate α average kinetic energy of gas molecules
Average kinetic energy αT
$P \propto T$

Kinetic theory of gases and ...

- Avogadro's Law
$P \alpha$ collision rate with wall
Collision rate α number density
Number density αn
$P \alpha n$
- Dalton's Law of Partial Pressures

Molecules do not attract or repel one another
P exerted by one type of molecule is unaffected by the presence of another gas

$$
P_{\text {total }}=\Sigma P_{\mathrm{i}}
$$

Apparatus for Studying Molecular Speed Distributiona

The distribution of speeds for nitrogen gas molecules at three different temperatures

The distribution of speeds of three different gases at the same temperature

$$
u_{\mathrm{rms}}=\sqrt{\frac{3 R T}{\mathcal{M}}}
$$

The R must be $8.314 \mathrm{~J}^{2} \mathrm{~mol}^{-1} . \mathrm{K}^{-1}$
The \mathbf{M} must be in $\mathrm{kg} / \mathrm{mol}$ units

Gas diffusion is the gradual mixing of molecules of one gas with molecules of another by virtue of their kinetic properties.

$$
\frac{r_{1}}{r_{2}}=\sqrt{\frac{\mathcal{M}_{2}}{\mathcal{M}_{1}}}
$$

molecular path

Gas effusion is the is the process by which gas under pressure escapes from one compartment of a container to another by passing through a small opening.

$$
\frac{r_{1}}{r_{2}}=\frac{t_{2}}{t_{1}}=\sqrt{\frac{\mathcal{M}_{2}}{\mathcal{M}_{1}}}
$$

Nickel forms a gaseous compound of the formula $\mathrm{Ni}(\mathrm{CO})_{x}$ What is the value of x given that under the same conditions methane $\left(\mathrm{CH}_{4}\right)$ effuses 3.3 times faster than the compound?

$$
\begin{array}{ll}
r_{1}=3.3 \times r_{2} & \mathcal{M}_{2}=\left(\frac{r_{1}}{r_{2}}\right)^{2} \times \mathcal{M}_{1}=(3.3)^{2} \times 16=174.2 \\
\mathcal{M}_{1}=16 \mathrm{~g} / \mathrm{mol} & 58.7+\times \cdot 28=174.2 \quad \times=4.1 \sim 4
\end{array}
$$

Deviations from Ideal Behavior

1 mole of ideal gas

$$
\begin{gathered}
P V=n R T \\
n=\frac{P V}{R T}=1.0
\end{gathered}
$$

Even the same gas will show wildly different behavior under high pressure at different temperatures.

Effect of intermolecular forces on the pressure exerted by a gas.

TABLE 5.4

van der Waals Constants of Some Common Gases

Van der Waals equation nonideal gas

$(\underbrace{\left.P+\frac{a n^{2}}{V^{2}}\right)(\underbrace{V-n b)}_{\substack{\text { corrected } \\ \text { volume }}}=n R T}_{\substack{\text { corrected } \\ \text { pressure }}}$

Gas	$\left(\frac{\mathbf{a t m} \cdot \mathbf{L}^{2}}{\mathbf{m o l}^{2}}\right)$	$\left(\frac{\mathbf{L}}{\mathbf{m o l}}\right)$
He	0.034	0.0237
Ne	0.211	0.0171
Ar	1.34	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0266
H_{2}	0.244	0.0266
$\mathrm{~N}_{2}$	1.39	0.0391
O_{2}	1.36	0.0318
Cl_{2}	6.49	0.0562
CO_{2}	3.59	0.0427
CH_{4}	2.25	0.0428
CCl_{4}	20.4	0.138
NH_{3}	4.17	0.0371
$\mathrm{H}_{2} \mathrm{O}$	5.46	0.0305

