678 PHYS

OPTICAL PROPERTIES OF SOLIDS

Prof. Dr. Hussein Abdelhafez Mohamed

First semester 1437-1438 H (2016-2017 J)

Course aims and outcomes

• Understand the classical theory of light propagation in solid state dielectric materials;

- Understand the quantum theory of absorption and emission in solids;
- Appreciate the importance of excitonic effects in solids;
- Understand the origin of nonlinear optical effects in crystals.

The outcome of the course will be that the student will be familiarised with the optical phenomena that occur in a wide range of solid state materials, based on an understanding of both the classical and quantum theories of how light interacts with dielectric materials.

Course syllabus

Lecture(1 hour)	Торіс
1-4	Introduction
	Optical coefficient, complex dielectric constant, complex
	refractive index, introduction to optical materials
5-9	Classical propagation
	Propagation of light in a dense optical media(atomic
	oscillators, vibrational oscillators, free electron oscillator),
	Dipole oscillator (Lorentz oscillator, multiple oscillator,
	Kramers-Kroning relationships), dispersion, birefringence
10-14	Interband absorption
	interband transition, band edge absorption in direct gap
	semiconductors, band edge absorption in indirect gap
	semiconductors, interband absorption above the band edge,
	semiconductors photodetectors (photodiodes, photovoltaic)
15-17	Excitons
	The concept of excitons, free excitons, free excitons in
	external fields
18-21	Luminescence
	Light emission in solids, interband luminescence,
	photoluminescence, electro luminescence
22-26	Semiconductor quantum wells
	Quantum confined structure, growth and structure of
	semiconductor quantum wells, infinite quantum wells, finite
	quantum wells, quantum confines Stark effect, optical
	emission, interbank transition, quantum dotes
27-30	Free electrons
	Plasma conductivity, free carrier conductivity, metal, doped
21.22	semiconductors, plasmons
31-33	Phonons
24.26	
54-30	Nonlinear optics

Textbook:

Optical properties of solids, Mrak Fox

Optical properties of solids, Frederick Wooten Introduction to solid state physics, Kittel Solid state physics, Ibach and Luth

Assessment:

First Midterm 12% Second Midterm 12% Homework 6% Lab 30% (15% report+15% final) Final exam 40%