

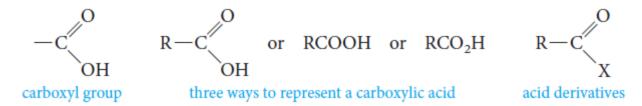
Fundamentals of Organic Chemistry CHEM 109

For Students of Health Colleges

Credit hrs.: (2+1)

King Saud University

College of Science, Chemistry Department


تجامعة الملك سعود King Saud University

Structure of Carboxylic Acids

The functional group common to all carboxylic acids is the <u>carboxyl group</u>.

The name is a contraction of the parts: the carbonyl and hydroxyl groups.

The general formula for a carboxylic acid can be written in expanded or abbreviated forms.

- Depending on whether an R or an Ar. residue is attached to the carboxyl group; Carboxylic acids are classified as;
 - Aliphatic Carboxylic Acids.

R-COOH
$$(R = H \text{ or alkyl})$$
 CH_3 -COOH Aliphatic acid Acetic acid

Aromatic Carboxylic Acids.

Ar—COOH
$$(R = C_6H_5-)$$
 Renzoic acid

Fatty acids.

Long straight-chain carboxylic acids with even numbers of carbons, which were first isolated from fats and waxes.

Common Names

- The common names of carboxylic acids all end in -ic acid.
- These names usually come from some Latin or Greek word that indicates the original source of the acid.
- \circ Common name, substituents are located with Greek letters, beginning with the $\alpha-$ carbon atom.

IUPAC System

 We replace the final e in the name of the corresponding alkane with the suffix -oic and add the word acid.

Alkane- e + oic acid = Alkanoic acid

 IUPAC system, the chain is numbered beginning with the carboxyl carbon atom, and substituents are located in the usual way.

5

Nomenclature of Carboxylic Acids

Carbon atoms	Formula	Source	Common name	IUPAC name
1	НСООН	ants (Latin, formica)	formic acid	methanoic acid
2	CH ₃ COOH	vinegar (Latin, acetum)	acetic acid	ethanoic acid
3	CH ₃ CH ₂ COOH	milk (Greek, protos pion, first fat)	propionic acid	propanoic acid
4	CH ₃ (CH ₂) ₂ COOH	butter (Latin, butyrum)	butyric acid	butanoic acid
5	CH ₃ (CH ₂) ₃ COOH	valerian root (Latin, <i>valere</i> , to be strong)	valeric acid	pentanoic acid
6	CH ₃ (CH ₂) ₄ COOH	goats (Latin, caper)	caproic acid	hexanoic acid
7	CH ₃ (CH ₂) ₅ COOH	vine blossom (Greek, oenanthe)	enanthic acid	heptanoic acid
8	CH ₃ (CH ₂) ₆ COOH	goats (Latin, caper)	caprylic acid	octanoic acid
9	CH ₃ (CH ₂) ₇ COOH	pelargonium (an herb with stork-shaped seed capsules; Greek, <i>pelargos</i> , stork)	pelargonic acid	nonanoic acid
10	CH ₃ (CH ₂) ₈ COOH	goats (Latin, caper)	capric acid	decanoic acid

(α -bromopropionic acid)

2-bromopropanoic acid propenoic acid

ÓН 3-hydroxybutanoic acid

(β-hydroxybutyric acid)

 The carboxyl group has priority over alcohol, aldehyde, or ketone functionality in naming.

(acrylic acid)

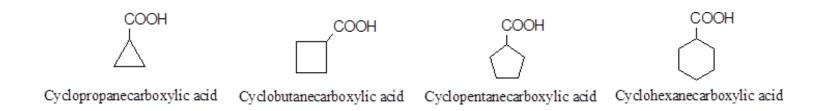
The prefix oxo- is used to locate the carbonyl group of the aldehyde or ketone.

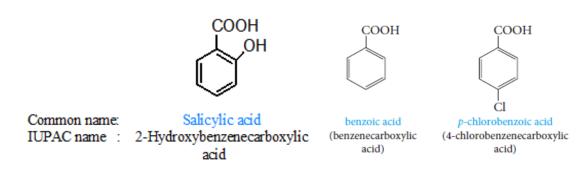
$$\begin{array}{ccc}
O \\
\parallel & 2 & 1 \\
HC - CH_2CO_2H \\
\end{array}$$

3-oxopropanoic acid

2-bromo-4-oxopentanoic acid

$$H_3C-C=C-COOH$$


But-2-enoic acid (2-Butenoic acid)


7

Cycloalkane carboxylic acid

When the carboxyl group is attached to a ring, the ending -carboxylic acid is added to the name of the parent cycloalkane. (i.e. Cycloalkanecarboxylic acid)

Aromatic acids are named by attaching the suffix -oic acid or -ic acid to an appropriate prefix derived from the aromatic hydrocarbon.

Dicarboxylic acids (acids that contain two carboxyl groups) are known almost exclusively by their common names.

> Aliphatic dicarboxylic acids are given the suffix -dioic acid in the IUPAC system.

$$HO_2$$
C — CH_2 C CH

> The three benzenedicarboxylic acids are generally known by their common names.

Physical Properties of Acids

- Carboxylic acids are polar and they form hydrogen bonds with themselves or with other molecules.
- Carboxylic acids form dimer, with the individual units held together by two hydrogen bonds between the electron-rich oxygens and the electron-poor hydrogens.

Boiling Points

Therefore, they have high boiling points for their molecular weights-higher even those of comparable alcohols.

Solubility in water

Hydrogen bonding also explains the water solubility of the lower molecular weight carboxylic acids.

- The first four aliphatic acids (formic through butyric) are completely miscible in water.
- Aromatic acids are insoluble in water.

Physical Properties of Acids

Structure	Name	Mol. Wt.	b.p. °C	Solubility in H ₂ O at 25°C
НСООН	Formic acid	46	100	Very soluble
CH ₃ CH ₂ OH	Ethyl alcohol	46	78	Very soluble
CH ₃ COOH	Acetic acid	60	118	Very soluble
CH ₃ CH ₂ CH ₂ OH	n-Propyl alcohol	60	97	Very soluble
CH ₃ (CH ₂) ₃ COOH	Valeric acid	102	187	4.0 g/100 g H ₂ O
CH ₃ (CH ₂) ₄ CH2OH	n-Hexyl alcohol	102	156	0.6 g/100 g H ₂ O
Ph-COOH	Benzoic acid	122	250	Insoluble
Ph-CH ₂ CH ₂ OH	3-Phenylethanol	122	250	Insoluble

Carboxylic acids (RCOOH) dissociate in water, yielding a carboxylate anion (RCOO⁻)
and hydronium ion.

$$R-C = \begin{array}{c} O \\ + H \ddot{O}H \end{array} \longrightarrow \begin{array}{c} R-C \\ O- \end{array} + \begin{array}{c} H \\ + H-O-H \\ \ddot{+} \end{array}$$

Why carboxylic acids are more acidic than alcohols?

- > In ethoxide ion, the negative charge is localized on a single oxygen atom.
- In acetate ion, on the other hand, the negative charge can be delocalized through resonance.

$$CH_{3}CH_{2}\overset{\cdot}{O}H \stackrel{\rightharpoonup}{\longleftarrow} CH_{3}CH_{2}\overset{\cdot}{O}:^{-} + H^{+}$$

$$ethoxide ion$$

$$\vdots\overset{\delta_{-}}{O}: \qquad \vdots O: \qquad \vdots$$

$$CH_{3}\overset{\parallel}{C}-\overset{\cdot}{O}H \stackrel{\rightharpoonup}{\longleftarrow} CH_{3}\overset{\cdot}{C}-\overset{\cdot}{O}:^{-} + H^{+}$$

$$acetate ion$$

resonance in a carboxylate ion (acetate ion)

Effect of Structure on Acidity; the Inductive Effect

- Acidities can vary depending on what other groups are attached to the molecule.
- Recall that electron-withdrawing groups (-1) enhance acidity, and electron-releasing groups (+1) reduce acidity.

This effect relays charge through bonds, by displacing bonding electrons toward electronegative atoms, or away from electropositive atoms.

$$_{\text{O}_{2}\text{N}}$$
 $>$ $_{\text{NO}_{2}}$ $>$ $_{\text{COOH}}$ $>$ $_{\text{CH}_{3}}$

Effect of Structure on Acidity; the Inductive Effect

Formic acid is a substantially stronger acid than acetic acid.

This suggests that the methyl group is more electron-releasing (hence anion-destabilizing and acidity-reducing) than hydrogen.

Example: acetic acid with those of mono-, di-, and trichloroacetic acids.
 Comparison of acid strengths of acetic Acid and chlorinated acetic acids

Effect of Structure on Acidity; the Inductive Effect

The more chlorines, the greater the effect and the greater the strength of the acid.

Comparison of acid strengths of butyric acid and the monochlorinated acids.

Preparation of Carboxylic Acids

1) Hydrolysis of Cyanides (Nitriles)

- The reaction requires either acid or base.
 - > In acid, the nitrogen atom of the cyanide is converted to an ammonium ion..

$$R - C = N + 2 H_2O \xrightarrow{HCl} R - C - OH + NH_4 + Cl$$
a cyanide, an acid ammonium ion

In base, the nitrogen atom is converted to ammonia and the organic product is the carboxylate salt, which must be neutralized in a separate step to give the acid.

$$R-C \equiv N+2 \text{ H}_2O \xrightarrow{\text{NaOH}} R-C-O-Na^+ + NH_3 \xrightarrow{\text{H}^+} R-C-OH$$
a carboxylate salt ammonia

Alkyl cyanides are generally made from the corresponding alkyl halide.

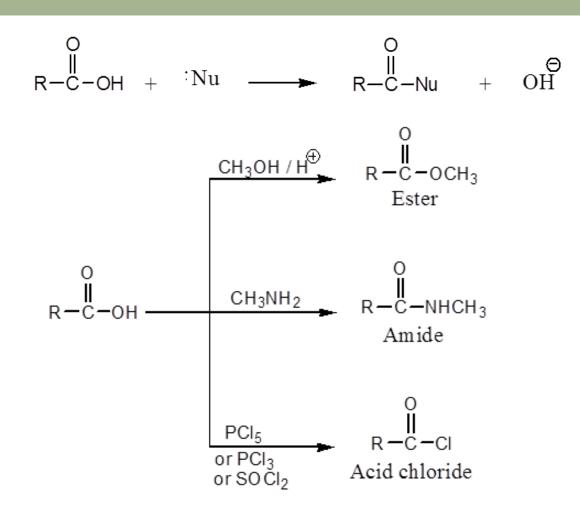
CH₃CH₂CH₂Br
$$\xrightarrow{\text{NaCN}}$$
 CH₃CH₂CH₂CN $\xrightarrow{\text{H}_2\text{O}}$ CH₃CH₂CH₂CO₂H + NH₄+ propyl bromide butyronitrile butyric acid (1-bromopropane) (butanenitrile) (butanoic acid)

2) Reaction of Grignard Reagents with Carbon Dioxide (Carbonation of Grignard Reagent)

- Grignard reagents add to the carbonyl group of carbon dioxide to give acids, after protonation of the intermediate carboxylate salt with a mineral acid like aqueous HCl.
- The acid obtained has one more carbon atom (the reaction provides a way to increase the length of a carbon chain).

Reactions of Carboxylic Acids

1) Reactions with Bases: Salt Formation

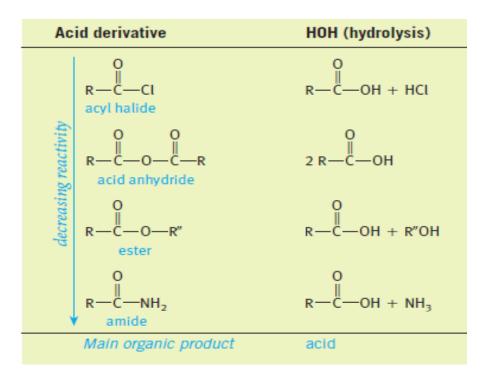

Carboxylic acids, when treated with a strong base, form carboxylate salts.

$$R-C-OH + NaHCO_3 \longrightarrow R-C-O$$
: $Na^+ + CO_2$ $+ H_2O$

Examples.

Reactions of Carboxylic Acids

2) Nucleophilic Substitution Reactions



 Carboxylic acid derivatives are compounds in which the hydroxyl part of the carboxyl group is replaced by various other groups.

$$\begin{array}{c|cccc} O & O & O & O & O \\ \parallel & \parallel & \left(X \text{ is usually} \right) & \parallel & \parallel & \parallel \\ R-C-OR' & R-C-X & \left(Cl \text{ or Br} \right) & R-C-O-C-R & R-C-NH_2 \\ \text{ester} & \text{acyl halide} & \text{acid anhydride} & \text{primary amide} \end{array}$$

 All acid derivatives can be hydrolyzed to the corresponding carboxylic acid.

Acid Chloride

- Acyl chlorides have the general formula RCOCI.
- Acyl chlorides are more common and less expensive than bromides or iodides.
- Nomenclature:

Acyl chlorides, or acid chlorides, are named by replacing the <u>-ic acid</u> ending of the parent acid by <u>-yl chloride</u>.

O Preparation:

They can be prepared from acids by reaction with thionyl chloride or phosphorous pentachloride.

$$R-C-OH + SOCl_2 \longrightarrow R-C-Cl + HCl + SO_2$$

$$R-C-OH + PCl_5 \longrightarrow R-C-Cl + HCl + POCl_3$$

Acid Chloride

Reactions: They can react rapidly with most nucleophile.

$$R-C-Cl \xrightarrow{H_2O} RCO_2H + HCl$$

$$Acid$$

$$R'OH \rightarrow RCO_2R' + HCl$$

$$Ester$$

$$NH_3 \rightarrow RCONH_2 + NH_4Cl$$

$$Amide$$

Examples:

$$CH_{3}-C-Cl + HOH \xrightarrow{rapid} CH_{3}-C-OH + HCl$$
acetyl chloride acetic acid (fumes)
$$CH_{3}-C-Cl + CH_{3}OH \xrightarrow{room temp.} C-OCH_{3} + HCl$$
benzoyl chloride methyl benzoate
$$CH_{3}C-Cl + 2NH_{3} \longrightarrow CH_{3}C-NH_{2} + NH_{4}^{+} Cl$$
acetyl chloride acetamide

Esters

Esters are derived from acids by replacing the —OH group by an —OR group and have the general
formula R/COOR.

Nomenclature:

- They are named in a manner analogous to carboxylic acid salts.
- The R part of the -OR group is name first, followed by the name of the acid, with the <u>-ic acid</u> ending changed to <u>-ate</u>.

Preparation:

When a carboxylic acid and an alcohol are heated in the presence of an acid catalyst (HCl or H_2SO_4), an equilibrium is established with the ester and water.

$$\begin{array}{c} O \\ \parallel \\ R-C-OH+HO-R' & \stackrel{H^+}{\longleftarrow} R-C-OR'+H_2O \\ \text{acid} & \text{alcohol} & \text{ester} \end{array}$$

Esters

Reactions

• Cyclic esters (lactones) can be prepared from hydroxy acids if these groups can come in contact through bending of the chain.

Saponification; esters are commonly hydrolyzed with base.

$$R - C + Na^{+}HO^{-} \xrightarrow{heat} R - C + R'OH$$

$$ester \quad nucleophile \quad salt of an acid \quad alcohol$$

Ammonia converts esters to amides.

$$R - C + NH_3 \longrightarrow R - C + R'OH$$
ester amide

Amides

- > Amides are the least reactive of the common carboxylic acid derivatives.
- > Primary amides have general formula RCONH₂.

Nomenclature:

Amides are named by replacing the <u>—ic or —oic acid</u> ending of the acid name, either the common or the IUPAC name, with the <u>—amide</u> ending.

Amides

Preparation:

- They can be prepared by the reaction of ammonia with esters, with acyl halides, or with acid anhydrides.
- Amides can also prepared by heating the ammonium salts of acids.

$$R - C - OH + NH_3 \longrightarrow R - C - O^-NH_4^+ \xrightarrow{heat} R - C - NH_2 + H_2O$$

$$\xrightarrow{ammonium \ salt} R - C - NH_2 + H_2O$$

Reactions

Amides react with nucleophiles and they can be hydrolyzed by water.

$$R - C - NH_2 + H - OH \xrightarrow{H^+ \text{ or} \atop HO^-} R - C - OH + NH_3$$

Amides can be reduced by lithium aluminums hydride to give amines.

$$R - C - NH_2 \xrightarrow{\text{LiAlH}_4} RCH_2NH_2$$
amide amine

Acid Anhydrides

- > Acid anhydrides have general formula RCOOCOR.
- Nomenclature:

The name of an anhydrides is obtained by naming the acid from which is derived and replacing the word acid with anhydride.

IUPA C name: Propanoic anhydride Common name: Propionic anhydride Benzoic anhydride

Succinic anhydride

Acid Anhydrides

Preparation

 Acid anhydrides are derived from acids by removing water from two carboxyl groups and connecting the fragments.

$$\begin{array}{c|cccc} O & O & O & O \\ \parallel & \parallel & \parallel & \parallel \\ R-C-OH & HO-C-R & R-C-O-C-R \\ & two acid molecules & an acid anhydride \\ \end{array}$$

• Anhydrides can also be prepared from acid chlorides and carboxylate salts.

This method is used for preparing anhydrides derived from two different carboxylic acids (mixed anhydrides).

$$CH_3CH_2CH_2 - C - Cl + Na^{+-}O - C - CH_3 \longrightarrow CH_3CH_2CH_2 - C - C - CH_3 + NaCl$$
butanoic ethanoic anhydride

Acid Anhydrides

Reactions

• Anhydrides undergo nucleophilic acyl substitution reactions (They are more reactive than esters, but less reactive than acyl halides).

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - CH_{3}$$

$$CH_{3} - C - CH_{3}$$

$$CH_{3} - C$$