

Humoral immunity Ig Biosynthesis

Ig genes And generation of diversity

Ig Diversity

- We can have Abs with same C region with many V regions
 - Different IgG molecules with different specificities
- We and also have Abs with different C regions and same V region
 - IgG, IgM, IgD can have specificity for same antigen
- How does it happen?
- Can be understood by studying genetics of Ig

History

- What is happening?
- May be proteins are fusing
- May be mRNA is fusing
- Is some thing happening at DNA level
- By comparing B cells genome with other cells genome.... We know now that at DNA level Igs are encoded by 3 gene families

History

- Igs are encoded by 3 gene families on separate chromosomes
 - λ light chain
 - κ light chain
 - Heavy chain family

Germ line organization of genes

Lambda light chain genes; n=30

- 4 C regions
- Several V regions (30)
- Several J segments
- Several L segments

Germ line organization of genes

Kappa light chain genes; n=300

- 1 C regions
- Several V regions (300)
- Several J segments
- Several L segments

Gene rearrangements in B cell

Lambda light chain genes; n=30

 DNA rearrangement occurs via recombination events

- Germ line organization of heavy chain genes on different chromosome
 - Variable regions (1000)
 - One constant region gene for every class and subclass of Ig
 - arranged in order μ, δ, γ, ε, α
 - Every constant region has introns ans exons
 - J gene segments
 - And D segments (15)

Sub classes of Ig

Ig Class	Heavy chain	subclasses	Light Chain	Molecular formula
IgG	γ	γ1 γ2 γ3 γ4	κorλ	$\gamma_2^{\kappa}_2^{}$ $\gamma_2^{\lambda}_2^{}$
IgA	α	α 1 α 2	κorλ	$(\alpha_2 \kappa_2)_{1, 2, 3, \text{ or 4}}$ $(\alpha_2 \lambda_2)_{1, 2, 3, \text{ or 4}}$
IgM	μ	None	κ or λ	$(\mu_2 \kappa_2)_{1 \text{ or 5}}$ $(\mu_2 \lambda_2)_{1 \text{ or 5}}$
IgE	3	None	κorλ	$\epsilon_2^{\kappa}_2$
IgD	δ	None	κorλ	$\delta_2^{\kappa_2^{}}$ $\delta_2^{\lambda_2^{}}$

Germ line organization of genes

Heavy chain genes; Vn=1000, Dn=15

- Gene rearrangements in B cell
- DNA re arrangement occurs twice in case of heavy chain genes
- Primary transcript can be processed in two ways
- RAG1 and RAG2 enzymes mediate recombination events

Primary transcript

RNA processing

L V DJ C_μ

C_μ heavy chain

Translation

Transport to ER

V DJ C_µ
V C
C_µ heavy chain

- Resulted heavy chain joins with light chain (λ or κ)
- Even though there is chance to express two heavy chains but the variable region is the same
- Maternal / paternal gene are simultaneously switched off

Order of Ig gene expression

Origin of Ab diversity

- B cell after rearranging heavy chain is called pre B cell
- Pre B cell express only heavy chain

Order of Ig gene expression

Ig gene expression

- B cell gets 2 chances to rearrange heavy chains
- 4 chances to rearrange light chains
- Order of gene expression explains
 - Why B cell only produces one kind of Ig
 - Why one B cell makes Abs of one specificity
 - Why allelic exclusion ?
 - Loss of specificity
 - No immunological memory

Ig Diversity

Diversity

- Diversity is the total of all the Antibody specificities that an organism is capable of expressing
- Diversity is mainly in the hyper variable region (HVR)
- Humans are capable or producing a minimum of 70 million different types of antibody specificities

Ig Diversity

- Diversity
- History
 - Two theories tried to explain the diversity
 - Germ line theory
 - Says we have all the genes responsible for the diversity (amount of DNA)
 - Somatic mutation theory
 - Says only have one gene for Ab and mutations generate the diversity

- Multiple V regions
- V-J and V-D-J joining
- Junctional diversity
 - Slight inaccuracy in recombination process also leads to generation of diversity

N region insertion

Amino acid sequences not encoded in germ

line

- Somatic mutations
- Combinatorial association

	B cell receptor (Immunoglobulin)		
	Heavy	Light	
V gene segments	1000	300	
D gene segments	15	-	
J gene segments	4	4	
N region insertion	++	•	
Junctional diversity	+++	+	
Somatic mutation	+	+	
	V x D x J 1000 x 15 x 4	V x J 300 x 4	
Total	6 x 10 ⁴	1.2 x 10 ³	
Combinatorial association	7.2 x 10 ⁷		

- All these rearrangements happening right now in our body
- Without exposure to Ag (independent of Ag)
- B cell prepares Ab without seeing Ag
- When Ag enters it will select one of the B cell clone which is producing specific Ab for it
- This is CLONAL SELECTION
- Once B cell encounter Ag, B cell start to secrete Abs and class switching also occurs
- Reason why IgM and IgD are cell surface bound

- Monoclonal antibodies are monospecific antibodies – applications
- Hybridoma technology

- Myeloma cells don't have HGPRT (hypoxanthine-guanine phosphoribosyltransferase)
 - Enzyme required for synthesis of nucleotides
- B cells can not grow indefinitely
- After fusion... cells will be selected in HAT medium (hypoxanthine-aminopterin thymidine medium)
- Only hybridomas will be selected and survive
- This hybridoma will produce monospecific Abs.

Pathways involved in nucleotide synthesis in mammalian cells

- HAT contains a drug Aminopterin which blocks one pathway for nucleotide synthesis making the cells to depend upon other pathway that needs HGPRT enzyme, which is absent in Myeloma cells.
- 2. Therefore, Myeloma cells which do not fuse with the B cells will die, since they are HGPRT-. B cells which do not fuse with the Myeloma cells will die, because they lack tumorgenic property of immortal growth.
- 3. Therefore HAT medium allows selection of Hybridoma cells which inherit HGPRT gene from B cells and tumorgenic property from Myeloma cells.

