
Titration curve of amino acids

Titration Curves:

- □ Titration Curves are produced by monitoring the pH of a given volume of a sample solution after successive addition of acid or alkali.
- □ The curves are usually plots of pH against the volume of <u>titrant</u> added (acid or base).
- □ Each dissociation group represent **one stage** in the titration curve.

Amino acid general formula:

- Amino acids consist of:
- ► A basic amino group (—NH₂)
- ➤ An acidic carboxyl group (—COOH)
- ➤ A hydrogen atom (—H)
- ► A distinctive side chain (—R).

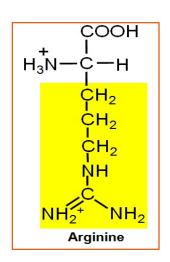
Titration of amino acid:

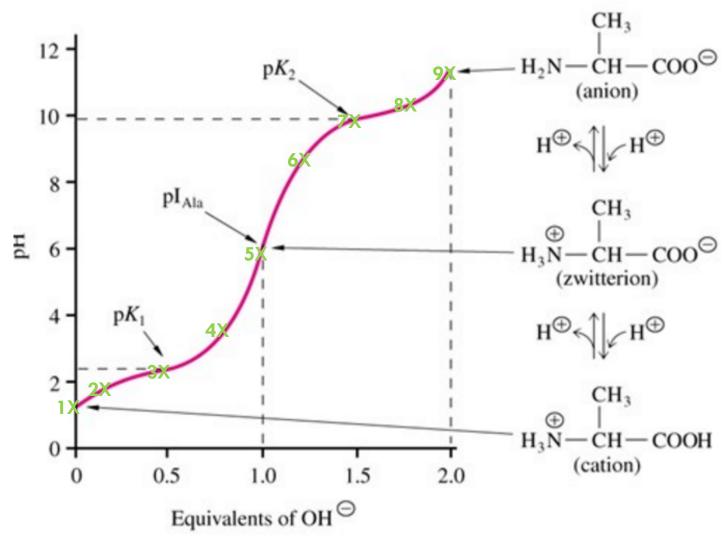
- □ When an amino acid is dissolved in water it exists predominantly in the **isoelectric form.**
- □ Amino acid is an **amphoteric** compound → It act as either an acid or a base:
 - **▶** Upon titration with acid \rightarrow it acts as a <u>BASE</u> (accept a proton).
 - ▶ Upon titration with base \rightarrow it acts as an <u>ACID</u> (donate a proton)

Titration of amino acid cont':

- Amino acids are example of weak acid which contain more than one dissociate group.
- **Examples:**

(1) Alanine:


- -Contain COOH (pKa₁= 2.34) and NH₃⁺ (pKa₂= 9.69) groups (it has one pI value =6.010). [Diprotic]
- -The COOH will dissociate first then NH₃⁺ dissociate later. (Because pKa₁<pKa₂)


Full protonated alanine

(2) Arginine:

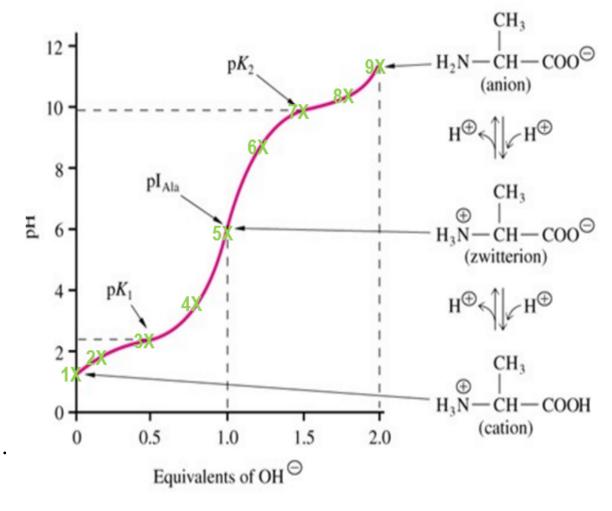
-Contain COOH (pKa₁= 2.34), NH₃⁺ (pKa₂= 9.69) groups and basic group (pKa₃=12.5) (it has one pI value=11). [Triprotic]

Titration curve of Alanine

pK₁ carboxylic acid = 2.34 pK₂ amino group = 9.69 pI = (pK ₁+ pK ₂)/2

Titration curve of alanine or glycine [diprotic]:

[1] In starting point:


- □ Alanine is full protonated.
- \square [NH₃⁺-CH-CH₃-COOH].

[2] COOH will dissociate first:

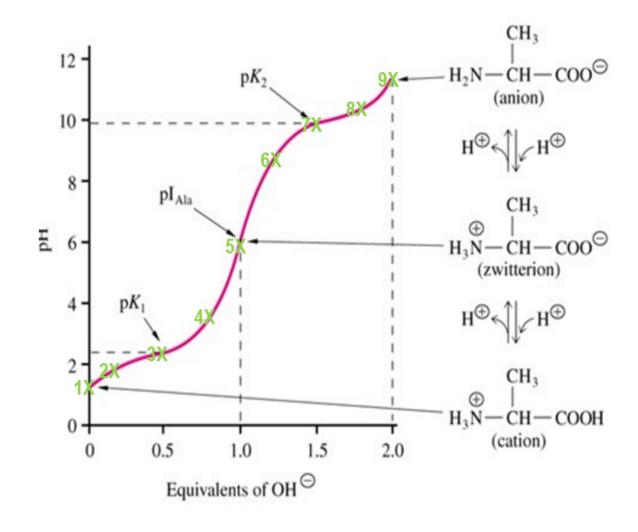
- \square [NH₃+-CH-CH₃-COOH] > [NH₃+-CH-CH₃-COO-]
- \Box pH<pKa₁.

[3] In this point the component of alanine act as buffer:

- \square [NH₃⁺-CH-CH₃-COOH]=[NH₃⁺-CH-CH₃-COO⁻].
- □ pH=pKa₁

Titration curve of alanine or glycine [diprotic]:

[4] In this point:


- \square [NH₃⁺-CH-CH₃-COOH]<[NH₃⁺-CH-CH₃-COO⁻].
- \square pH > pKa₁.

[5] Isoelectric point:

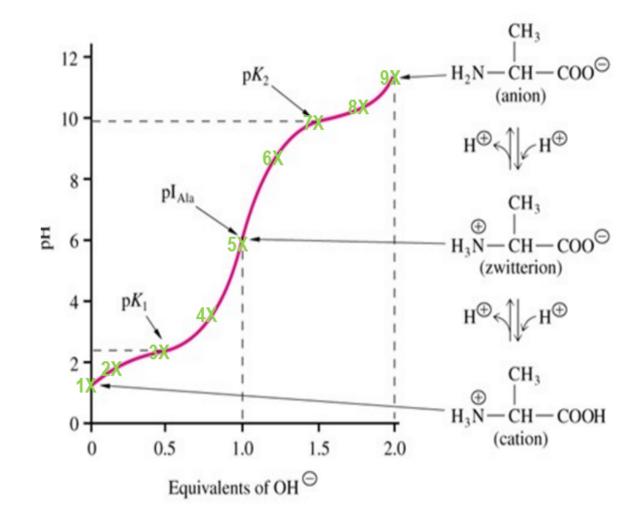
- □ The COOH is full dissociate to COO⁻.
- \square [NH₃⁺-CH-CH₃-COO⁻].
- \Box Con. of -ve charge = Con. of +ve charge.
- The amino acid present as Zwetter ion (neutral form).
- Remember that :PI (isoelectric point) is the pH value at which the net charge of amino acid equal to zero.
- $pI = (pKa_1 + pKa_2)/2 = (2.32+9.96)/2 = 6.01$

[6] The NH₃⁺ start <u>dissociate</u>:

- pH <pKa₂.

Titration curve of alanine or glycine [diprotic]:

[7] In this point the component of alanine act as buffer:


- \square pH=pKa₂.

[8] In this point:

- \square pH >pKa₂

[9] End point:

- □ The alanine is full dissociated.
- \square [NH₂-CH-CH₃-COO⁻]
- \Rightarrow pKb = pKw pKa2

Calculating the pH at different point of the titration curve:

The pH calculated by different way:

[1] at starting point:

$$pH = (pka + P[HA])/2$$

[2] At any point within the curve (before or in or after middle titration):

[3] At end point:

$$pOH=(pKb+P[A-])/2$$

 $pH=pKw-pOH$
 $pKb=pKw-pKa2$

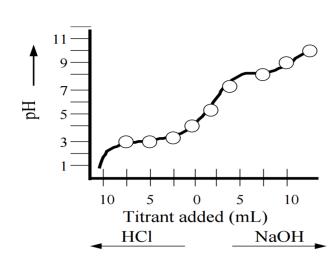
Practical Part

Objectives:

- □ To study titration curves of amino acid.
- □ To use this curve to estimate the pKa values of the ionizable groups of the amino acid.
- □ To determine pI.
- □ To determine the buffering region.
- □ To understand the acid base behaviour of an amino acid.

Method:

You are provided with 10 ml of a 0.1M alanine solution, titrate it with 0.1M NaOH adding the base drop wise mixing, and recording the pH after each 0.5 ml NaOH added until you reach a pH=11.


Measured pH value	Amount of 0.1M NaOH added [ml]

Take another 10 ml of a 0.1M alanine solution, titrate it with 0.1 M HCL adding the acid drop wise mixing, and recording the pH after each 0.5 ml HCL added until you reach a pH=2.17.

Measured pH value	Amount of 0.1M HCl added [ml]

Results:

- □ Record the titration table and plot a curve of pH versus ml of titrant added.
- □ Calculate the pH of the alanine solution after the addition of 0 ml, 5ml, of 0.1M NaOH, and calculate pH after addition of 0.5 ml, 2ml of HCl.
- Determine the pKa of ionizable groups of amino acids.
- Compare your calculated pH values with those obtained from Curve.
- Determine the PI value from your result.

