Titration curve of amino acids

Titration Curves :

\square Titration Curves are produced by monitoring the pH of a given volume of a sample solution after successive addition of acid or alkali.
\square The curves are usually plots of pH against the volume of titrant added (acid or base).
\square Each dissociation group represent one stage in the titration curve.

Amino acid general formula:

\square Amino acids consist of:
โ
A basic amino group ($-\mathrm{NH}_{2}$)
An acidic carboxyl group (-COOH)
> A hydrogen atom (-H)
> A distinctive side chain (-R).

Amino Acid Structure

Amphoteric nature of amino acid:

\square When an amino acid is dissolved in water it exists predominantly in the zwitterion form.
\square Amino acid is an amphoteric compound \rightarrow It act as either an acid or a base:
> Upon titration with acid $\boldsymbol{\rightarrow}$ it acts as a BASE (accept a proton).
> Upon titration with base $\boldsymbol{\rightarrow}$ it acts as an ACID (donate a proton)

Amino acid as weak acids:

\square Amino acids are example of weak acid which contain more than one dissociate group.
\square Examples:
(1) Alanine:
-Contain $\mathrm{COOH}\left(\mathrm{pKa}_{1}=2.34\right)$ and $\mathrm{NH}_{3}{ }^{+}\left(\mathrm{pKa}_{2}=9.69\right)$ groups (it has one pI value $\left.=6.010\right)$. [Diprotic]

- The COOH will dissociate first then $\mathrm{NH}_{3}{ }^{+}$dissociate later . (Because $\mathrm{pKa} 1<\mathrm{pKa} 2$)

Full protonated alanine

(2) Arginine:

-Contain $\mathrm{COOH}\left(\mathrm{pKa}_{1}=2.34\right), \mathrm{NH}_{3}{ }^{+}\left(\mathrm{pKa}_{2}=9.69\right)$ groups and basic group $\left(\mathrm{pKa}_{3}=12.5\right)$ (it has one pI value $=11$). [Triprotic]

Tittation curve of Alanine

Titration curve of alanine [diprotic]:

[1] In starting point:
\square Alanine is full protonated.
$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COOH}\right]$.

[2] $\mathbf{C O O H}$ will dissociate first:

$\square\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COOH}\right]>\left[\mathrm{NH} 3+-\mathrm{CH}-\mathrm{CH} 3-\mathrm{COO}^{-}\right]$
$\square \mathrm{pH}<\mathrm{pKa}_{1}$.
[3] In this point the component of alanine act as buffer:
$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COOH}\right]=\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.
$\square \mathrm{pH}=\mathrm{pKa}_{1}$

Titration curve of alanine or glycine [diprotic]:

[4] In this point:
$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COOH}\right]<\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.

- $\mathrm{pH}>\mathrm{pKa}_{1}$.
[5] Isoelectric point:
- The COOH is full dissociate to COO^{-}.
- $\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.
- -ve charge $=+$ ve charge.
- The amino acid present as Zwetter ion (neutral form) .
$\square \quad$ Remember that $: \mathrm{pI}$ (isoelectric point) is the pH value at which the net charge of amino acid equal to zero.
$\square \mathrm{pI}=\left(\mathrm{pKa}_{1}+\mathrm{pKa}_{2}\right) / 2=(2.32+9.96) / 2=6.01$
[6] The $\mathbf{N H}_{3}{ }^{+}$start dissociate:
- $\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}^{-}-\mathrm{CH}_{3}-\mathrm{COO}-\right]>\left[\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}\right]$.
$\square \quad \mathrm{pH}<\mathrm{pKa}_{2}$.

Titration curve of alanine or glycine [dippotic]:

[7] In this point the component of alanine act

 as buffer:- $\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]=\left[\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.
$\square \mathrm{pH}=\mathrm{pKa}_{2}$.
[8] In this point:
$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]<\left[\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.
$\square \mathrm{pH}>\mathrm{pKa}_{2}$

[9] End point:

\square The alanine is full dissociated.

- $\left[\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$
- $\mathrm{pOH}=(\mathrm{pkb}+\mathrm{P}[\mathrm{A}-]) / 2$
$\rightarrow \mathrm{pKb}=\mathrm{pKw}-\mathrm{pKa} 2$

Calculating the pH at different point of the titration curve:

The pH calculated by different way :

[1] at starting point :

$$
\mathrm{pH}=(\mathrm{pka} 1+\mathrm{p}[\mathrm{HA}]) / 2
$$

[2] At any point within the curve (except start and end points):

$$
\mathrm{pH}=\mathrm{pka} 1+\log \left(\left[\mathrm{HA}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{~A}\right]\right) \quad \text { and } \quad \mathrm{pH}=\mathrm{pka} 2+\log \left(\left[\mathrm{A}^{2-}\right] /\left[\mathrm{HA}^{-}\right]\right)
$$

[3] At end point:

$$
\begin{aligned}
& \mathrm{pOH}=(\mathrm{pKb}+\mathrm{p}[\mathrm{~A}-]) / 2 \\
& \mathrm{pH}=\mathrm{pKw}-\mathrm{pOH} \\
& \mathrm{pKb}=\mathrm{pKw}-\mathrm{pKa} 2
\end{aligned}
$$

Determine the $\mathbf{p H}$ value of 100 ml of alanine (0.2 M), titrated with 0.2 M KOH and $0.2 \mathrm{M} \mathrm{HCl},(\mathrm{pKa}=2.34$ and $\mathrm{pKa}=9.69)$, after addition of: (1) $\mathbf{5 0} \mathbf{~ m l}$ of HCL. (2) $\mathbf{3 0} \mathbf{~ m l ~ o f ~ K O H . ~}$

[1] pH after addition of 40 ml of HCL?

HCL (acid) \rightarrow amino acid act as base $\rightarrow \mathrm{COO}^{-}$to COOH
$\mathrm{pH}=\mathrm{pka} 1+\log \left(\left[\mathrm{HA}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{~A}\right]\right)$,
$\mathrm{HA}^{-}=$Mole of $\mathbf{~ H A}$ [original] - mole of $\mathbf{H C l}$ [added] = mole of $\mathbf{H A}$ remaining. $\mathrm{H}_{2} \mathrm{~A}=$ mole of $\mathbf{H C L}$ [added]
-No. of HCL $\left[\mathrm{H}_{2} \mathrm{~A}\right]$ mole $=0.2 \mathrm{X} 0.04 \mathrm{~L}=0.008$ mole
-No. of HA mole originally $=0.2 \mathrm{X} 0.1 \mathrm{~L}=0.02$ mole
-No. of HA mole remaining $=0.02-0.008=0.012 \mathrm{~mole}$

```
So,
pH=pka1+log([remaining]/[added])
pH}=2.34+\operatorname{log}[0.012]/[0.008
pH}=2.5
```


[2] pH after addition of 30 ml of KOH ?

$\mathbf{N a O H}$ (base) \rightarrow amino acid act as acid $\rightarrow \mathbf{N H}_{3}{ }^{+}$to $\mathbf{N H}_{\mathbf{2}}$

$\mathrm{pH}=\mathrm{pka} 2+\log \left(\left[\mathrm{A}^{2-}\right] /\left[\mathrm{HA}^{-}\right]\right)$
$\mathrm{HA}^{=}=$Mole of HA [original] - mole of KOH [added] = mole of HA remaining. $\mathrm{A}^{2-}=$ mole of KOH [added]
-No. of $\mathrm{KOH}\left[\mathrm{A}^{2-}\right.$] mole $=0.2 \mathrm{X} 0.03 \mathrm{~L}=0.006$ mole
-No. of HA mole originally $=0.2 \mathrm{X} 0.1 \mathrm{~L}=0.02$ mole
-No. of HA mole remaining $=0.02-0.006=0.014$ mole
So,
$\mathrm{pH}=\mathrm{pka} 2+\log ([$ added $] /[$ remaining $])$
$\mathrm{pH}=9.69+\log [0.006] /[0.014]$
$\mathrm{pH}=9.32$

Praciical Pap

Objectives:

\square To study titration curves of amino acid.
\square To use this curve to estimate the pKa values of the ionizable groups of the amino acid.
\square To determine pI.
\square To determine the buffering region.
\square To understand the acid base behaviour of an amino acid.
a) You are provided with 10 ml of a 0.1 M alanine solution, titrate it with 0.1 M NaOH adding the base drop wise mixing, and recording the pH after each 0.5 ml NaOH added until you reach a $\mathrm{pH}=11$.

b) Take another 10 ml of a 0.1 M alanine solution, titrate it with 0.1 M HCL adding the acid drop wise mixing, and recording the pH after each 0.5 ml HCL added until you reach a $\mathrm{pH}=2.17$.

\square Record the titration table and plot a curve of pH versus ml of titrant added.
\square Calculate the pH of the alanine solution after the addition of $0 \mathrm{ml}, 5 \mathrm{ml}$, of 0.1 M NaOH , and calculate pH after addition of $0.5 \mathrm{ml}, 2 \mathrm{ml}$ of HCl .
\square Determine the pKa of ionizable groups of amino acids.
\square Compare your calculated pH values with those obtained from Curve.
\square Determine the pI value from your result .

