Culture Media

Part 2

Done by: Nada Almebairik
Culture media can be classified according to their:

A) Physical states (Forms of media):
- Solid media.
- Semi-solid media.
- Liquid media.

B) Function:
- Basic media
- Enriched media
- Enrichment media
- Selective media
- Differential media
- Transport media
Forms of Culture Media

1. Liquid form:
 • Called: broth.
 • Without agar (solidifying agent).
 • Used to grow bacteria in large quantity.

 ➢ Growth of bacteria-----> turbidity
 ➢ No growth ----> clear
2. **Solid form:**

- With agar (1-2% agar).
- Solid media can be:
 - **Slant:** a tube containing solid media that was left to solidify at an angle. Used to keep the bacteria for long period of time (3 months)
 - **Deep agar:** agar solidified at bottom of tube. Used to keep the bacteria for long time (6 months or more).
 - **Plate:** used mostly to culture organisms, and to get pure culture of bacteria (isolated colony).

3. **Semi-solid agar:**

- Contains less agar than solid media (0.5% agar).
- Used as transport media, and for motility and biochemical tests.
Slant

Agar plate

Deep

Figure 6.11 Slant tube containing solid media
Motility in semi-solid media
Types of Culture Media According to their Functions

1. Basal media:
 - It’s simple media, such as: nutrient agar (NA) and nutrient broth.
 - It allow the growth of non fastidious (do not have special nutritional requirements) or non-pathogenic bacteria.
 - Used in preparation of enriched media and to maintain stock culture of bacteria.

> For the culture: notice the shape, margin, elevation, color, size, smell of organism.
Notice pigment production by organism

Micrococcus luteus
Chromobacter violaceum
Serratia marcescens
Klebsiella spp.

Bacillus

Pseudomonas
2. **Enriched media:**

- It is basal media has been enriched by adding blood, serum or protein.
- It allow the growth of fastidious and pathogenic bacteria.
- Ex: Blood agar (BA), Chocolate agar.
3. Selective media:
• It contains inhibiting agents that inhibit some organisms and allows others to grow.
• Inhibiting agents: bile salt, dyes, antibiotics.
• Examples:
 A) Macconkey agar (Mac):
 ▪ Inhibiting agent>> bile salt & crystal violet.
 ▪ It allow the growth of gram-negative bacteria and inhibit the growth of gram-positive bacteria.

 B) Eosin Methylene Blue agar(EMB):
 ▪ Inhibiting agent>> methylene blue
 ▪ It allow the growth of gram-negative bacteria and inhibit the growth of gram-positive bacteria.
4. Differential media:
• Contain indicator which differentiate between two types of bacteria.
• Examples:
A) Mac:
 ▪ Sugar **Lactose**.
 ▪ Indicator **Neutral red**.
 ▪ Used to differentiate between lactose fermenting (LF) & Non-lactose fermenting (NLF) bacteria.

LF>> pink colonies *NLF*>> yellow colonies
B) EMB:

- Sugar **Lactose**.
- Indicator **Eosin** and **Methylen blue**.
- Used to differentiate between LF & NLF bacteria.

LF>> **pink colonies (dark purple)**

NLF>> **colorless colonies**

- **E.coli**: LF produce “**green metallic sheen**” colonies
E. coli on EMB
C) Cystine Lactose Electrolyte Deficient (CLED):

- Sugar **Lactose**
- Indicator **Bromothymol Blue**
- Used to differentiate between LF and NLF bacteria.

LF>> **yellow** colonies
NLF>> **colorless** colonies
D) Blood Agar:

- Used to differentiate between different types of hemolysis.

- Types of hemolysis:
 - α Hemolysis
 - β Hemolysis
 - γ Hemolysis
Types of Hemolysis

α hemolysis:
• Incomplete hemolysis
• Greenish color around colonies
β hemolysis:
- Complete hemolysis
- Clear area around colonies.

γ Hemolysis:
No hemolysis
Blood Agar:
- Shows three types of hemolysis
 - α Hemolysis
 - β Hemolysis
 - γ Hemolysis

[Images of Beta, Alpha, and Gamma Hemolysis]
5. Selective and Differential media:

- Example:
 A) Mac
 B) EMB
 C) Mannitol Salt Agar (MSA)

- Inhibiting agent: high salt concentration 7.5%
- Only organisms that can tolerate high salt conc. can grow on it.
- Sugar Mannitol Indicator Phenol red
- The organism that ferments mannitol give **yellow color** colonies, if organism does not ferment mannitol no change in color (**colorless**)
Swarming of Proteus

• Swarming appear as spreading rose on BA and NA plates.
• CLED inhibit swarming.